The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Metabolism, pharmacokinetics and excretion of a potent tachykinin NK1 receptor antagonist (CP-122,721) in rat: characterization of a novel oxidative pathway.

The metabolism, pharmacokinetics and excretion of a potent and selective substance P receptor antagonist, (+)-(2S,3S)-3-(2-methoxy-5-trifluoromethoxybenzlamino)-2-phenylpiperidine, CP-122,721, have been studied in rat following oral administration of a single dose of [14C]CP-122,721. Total recovery of the administered dose was 84.1+/-1.1% for male rat and 80.9+/-2.7% for female rat. Approximately 81% of the administered radioactivity recovered in urine and faeces were excreted in the first 72 h. Absorption of CP-122,721 was rapid in both male and female rat, as indicated by the rapid appearance of radioactivity in plasma. The plasma concentrations of total radioactivity were always much greater than unchanged drug, indicating early formation of metabolites. CP-122,721 t1/2 was 3.1 and 2.2 h for male and female rat, respectively. The plasma concentrations of CP-122,721 reached a peak of 941 and 476 ng ml-1 for male and female rat, respectively, at 0.5 h post-dose. Based on AUC0-tlast, only 1.5% of the circulating radioactivity was attributable to unchanged drug (average of male and female rats) and the balance, approximately 98.5% of the plasma radioactivity was due to metabolites. The major metabolic pathways of CP-122,721 were due to O-demethylation, aromatic hydroxylation and indirect glucuronidation. The minor metabolic pathways included aliphatic oxidation at the piperidine moiety and aliphatic oxidation at the benzylic position of the trifluoromethoxy anisole moiety. In addition, a novel oxidative metabolite resulting from ipso substitution by the oxygen atom and trifluoromethoxy elimination followed by glucuronide conjugation was also identified.[1]

References

 
WikiGenes - Universities