The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana.

Cryptochromes are blue-light receptors controlling multiple aspects of plant growth and development. They are flavoproteins with significant homology to photolyases, but instead of repairing DNA they function by transducing blue light energy into a signal that can be recognized by the cellular signaling machinery. Here we report the effect of cry1 and cry2 blue light receptors on primary root growth in Arabidopsis thaliana seedlings, through analysis of both cryptochrome-mutant and cryptochrome-overexpressing lines. Cry1 mutant seedlings show reduced root elongation in blue light while overexpressing seedlings show significantly increased elongation as compared to wild type controls. By contrast, the cry2 mutation has the opposite effect on root elongation growth as does cry1, demonstrating that cry1 and cry2 act antagonistically in this response pathway. The site of cryptochrome signal perception is within the shoot, and the inhibitor of auxin transport, 1-N-naphthylphthalamic acid, abolishes the differential effect of cryptochromes on root growth, suggesting the blue-light signal is transmitted from the shoot to the root by a mechanism that involves auxin. Primary root elongation in blue light may thereby involve interaction between cryptochrome and auxin signaling pathways.[1]

References

  1. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Canamero, R.C., Bakrim, N., Bouly, J.P., Garay, A., Dudkin, E.E., Habricot, Y., Ahmad, M. Planta (2006) [Pubmed]
 
WikiGenes - Universities