The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CRY1  -  cryptochrome-1

Arabidopsis thaliana

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CRY1


High impact information on CRY1


Biological context of CRY1


Anatomical context of CRY1


Associations of CRY1 with chemical compounds


Regulatory relationships of CRY1


Other interactions of CRY1

  • The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1 [20].
  • HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana [15].
  • A null mutation in PHYA impaired the membrane depolarization and prevented the early cry1-dependent phase of growth inhibition as effectively and with the same time course as mutations in CRY1 [12].
  • In addition, stomata of the phot1 phot2 double mutant responded to blue light, but those of the cry1 cry2 phot1 phot2 quadruple mutant hardly responded [21].
  • Therefore, cry1/cry2/phyA-mediated blue light activation of the psbD light-responsive promoter in 21-day-old Arabidopsis plants does not involve hy5, a transcription factor that mediates other phyA and blue light-induced responses [22].

Analytical, diagnostic and therapeutic context of CRY1

  • Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner [23].
  • Furthermore, analysis of severely phytochrome-deficient mutants showed that CRY1-mediated blue-light responses were considerably reduced, even though Western blots confirmed that levels of CRY1 photoreceptor are unaffected in these phytochrome-deficient mutant backgrounds [24].
  • Stomata of the cry1 cry2 double mutant showed reduced blue light response, whereas those of the CRY1-overexpressing plants showed hypersensitive response to blue light [21].
  • We investigated the full-length CRY1 protein by Fourier transform infrared (FTIR) and UV/vis difference spectroscopy [25].
  • Apex dissection indicated that in phyB cry1 double mutants internode elongation anticipated the transition from the vegetative to the reproductive stage [26].


  1. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Lin, C., Ahmad, M., Cashmore, A.R. Plant J. (1996) [Pubmed]
  2. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Kleine, T., Lockhart, P., Batschauer, A. Plant J. (2003) [Pubmed]
  3. Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. Zeugner, A., Byrdin, M., Bouly, J.P., Bakrim, N., Giovani, B., Brettel, K., Ahmad, M. J. Biol. Chem. (2005) [Pubmed]
  4. Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Bouly, J.P., Giovani, B., Djamei, A., Mueller, M., Zeugner, A., Dudkin, E.A., Batschauer, A., Ahmad, M. Eur. J. Biochem. (2003) [Pubmed]
  5. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Sancar, A. Annu. Rev. Biochem. (2000) [Pubmed]
  6. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R. Cell (2000) [Pubmed]
  7. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., Lin, C. Nature (2002) [Pubmed]
  8. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Jarillo, J.A., Capel, J., Tang, R.H., Yang, H.Q., Alonso, J.M., Ecker, J.R., Cashmore, A.R. Nature (2001) [Pubmed]
  9. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Baum, G., Long, J.C., Jenkins, G.I., Trewavas, A.J. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  10. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Ahmad, M., Jarillo, J.A., Smirnova, O., Cashmore, A.R. Nature (1998) [Pubmed]
  11. Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Osterlund, M.T., Deng, X.W. Plant J. (1998) [Pubmed]
  12. Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. Folta, K.M., Spalding, E.P. Plant J. (2001) [Pubmed]
  13. Interaction of cryptochrome 1, phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyl protoplasts. Wang, X., Iino, M. Plant Physiol. (1998) [Pubmed]
  14. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Martínez-Hernández, A., López-Ochoa, L., Argüello-Astorga, G., Herrera-Estrella, L. Plant Physiol. (2002) [Pubmed]
  15. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., Straeten, D.V., Ahmad, M. Plant J. (2007) [Pubmed]
  16. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Canamero, R.C., Bakrim, N., Bouly, J.P., Garay, A., Dudkin, E.E., Habricot, Y., Ahmad, M. Planta (2006) [Pubmed]
  17. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Ahmad, M., Jarillo, J.A., Cashmore, A.R. Plant Cell (1998) [Pubmed]
  18. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Folta, K.M., Spalding, E.P. Plant J. (2001) [Pubmed]
  19. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Wade, H.K., Bibikova, T.N., Valentine, W.J., Jenkins, G.I. Plant J. (2001) [Pubmed]
  20. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Yang, H.Q., Tang, R.H., Cashmore, A.R. Plant Cell (2001) [Pubmed]
  21. From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H., Yang, H.Q. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  22. Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter. Thum, K.E., Kim, M., Christopher, D.A., Mullet, J.E. Plant Cell (2001) [Pubmed]
  23. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Sang, Y., Li, Q.H., Rubio, V., Zhang, Y.C., Mao, J., Deng, X.W., Yang, H.Q. Plant Cell (2005) [Pubmed]
  24. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Ahmad, M., Cashmore, A.R. Plant J. (1997) [Pubmed]
  25. Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Kottke, T., Batschauer, A., Ahmad, M., Heberle, J. Biochemistry (2006) [Pubmed]
  26. Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1. Mazzella, M.A., Bertero, D., Casal, J.J. Planta (2000) [Pubmed]
WikiGenes - Universities