The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans.

Numerous factors have been theorized to affect the development of antimicrobial resistance, including those specific to the host, the organism, the environment, the drug, and the drug prescriber. One variable under the control of the prescriber is the drug dosing regimen. Dosing regimens can vary in dose level, dosing interval, and treatment duration. The current studies examined the relationships between antimicrobial dosing regimens and resistance development by use of an in vivo model. A murine model of systemic Candida albicans infection was used to examine resistance emergence during exposure to the triazole antifungal fluconazole. Data from this experimental model demonstrated that the more frequently administered dosing prevented selection of the isogenic resistant cell populations. Conversely, dosing regimens producing prolonged sub-MIC effects appeared to contribute to the outgrowth of isogenic resistant strains. The association between dosing and resistance emergence observed in the current investigation is disparate from that described for antimicrobial compounds with cidal killing characteristics. The inhibitory or static antimicrobial activity of the triazole compounds may explain these differences.[1]

References

  1. Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans. Andes, D., Forrest, A., Lepak, A., Nett, J., Marchillo, K., Lincoln, L. Antimicrob. Agents Chemother. (2006) [Pubmed]
 
WikiGenes - Universities