The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial.

Peroxisome proliferator-activated receptor (PPAR)-delta regulates fatty acid oxidation and improves insulin sensitivity. We screened six single nucleotide polymorphisms (SNPs) of the PPAR-delta gene (PPARD) for an association with the conversion from impaired glucose tolerance (IGT) to type 2 diabetes in 769 subjects participating in the STOP-NIDDM trial. A 2.7-fold increase in the risk of diabetes was observed in female carriers of the C allele of rs6902123 (95% CI 1.44-5.30; adjusted P = 0.002). In the placebo group, subjects possessing both the 482Ser allele of the PPAR-gamma coactivator-1alpha gene (PGC-1A) and the rare allele of two SNPs of PPARD (rs6902123 and rs3734254) had up to 2.5-fold increased risk for diabetes. Furthermore, women carrying the C allele of rs6902123 of PPARD and the Pro12Pro genotype of the PPAR-gamma2 gene (PPARG2) had a 3.9-fold (95% CI 1.79-8.63; P = 0.001)-higher risk for diabetes than women with protective genotypes. Expression levels of PPAR-delta in subcutaneous adipose tissue of 87 offspring of Finnish patients with type 2 diabetes did not differ among the genotype groups of SNPs of PPARD. We conclude that SNPs in PPARD modify the conversion from IGT to type 2 diabetes, particularly in combination with the SNPs of PGC-1A and PPARG2.[1]

References

 
WikiGenes - Universities