The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Galphao/i and Galphas signaling function in parallel with the MSP/Eph receptor to control meiotic diapause in C. elegans.

BACKGROUND: A conserved biological feature of sexual reproduction in animals is that oocytes arrest in meiotic prophase and resume meiosis in response to extraovarian signals. In C. elegans, sperm trigger meiotic resumption by means of the major sperm protein ( MSP) signal. MSP promotes meiotic resumption by functioning as an ephrin-signaling antagonist and by counteracting inhibitory inputs from the somatic gonadal sheath cells. RESULTS: By using a genome-wide RNAi screen in a female-sterile genetic background, we identified 17 conserved genes that maintain meiotic arrest in the absence of the MSP signal. In vitro binding experiments show that MSP promotes oocyte mitogen-activated protein kinase activation and meiotic maturation in part through direct interaction with the VAB-1 Eph receptor. Four conserved proteins, including a disabled protein (DAB-1), a vav family GEF (VAV-1), a protein kinase C ( PKC-1), and a STAM homolog (PQN-19), function with the VAB-1 Eph/ MSP receptor in oocytes. We show that antagonistic Galphao/i and Galphas signaling pathways function in the soma to regulate meiotic maturation in parallel to the VAB-1 pathway. Galphas activity is necessary and sufficient to promote meiotic maturation, which it does in part by antagonizing inhibitory sheath/oocyte gap-junctional communication. CONCLUSIONS: Our findings show that oocyte Eph receptor and somatic cell G protein signaling pathways control meiotic diapause in C. elegans, highlighting contrasts and parallels between MSP signaling in C. elegans and luteinizing hormone signaling in mammals.[1]


WikiGenes - Universities