The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Dual Role of Peroxiredoxin I in Macrophage-derived Foam Cells.

We and others have shown that foam cell formation initiated by exposing macrophages to oxidized low density lipoprotein (oxLDL) triggers the differential expression of a number of proteins. Specifically, our experiments have identified peroxiredoxin I (Prx I) as one of these up-regulated proteins. The peroxiredoxins, a family of peroxidases initially described for their antioxidant capability, have generated recent interest for their potential to regulate signaling pathways. Those studies, however, have not examined peroxiredoxin for a potential dual functionality as both cytoprotective antioxidant and signal modulator in a single, oxidant-stressed system. In this report, we examine the up-regulation of Prx I in macrophages in response to oxLDL exposure and its ability to function as both antioxidant enzyme and regulator of p38 MAPK activation. As an antioxidant, induction of Prx I expression led to improved cell survival following treatment with oxLDL or tert-butyl hydroperoxide. The improved survival coincided with a decrease in measurable reactive oxygen species (ROS), and both the increased survival and reduced ROS were reversed by Prx I small interfering RNA transfection. Additionally, our data show that activation of p38 MAPK in oxLDL-treated macrophages was dependent on the up-regulation of Prx I. Reduction of Prx I expression by small interfering RNA transfection resulted in a significant decrease in p38 MAPK activation, whereas the up-regulation of Prx I expression with either oxLDL or ethoxyquin led to increased p38 MAPK activation. These results are consistent with multiple roles for Prx I in macrophage-derived foam cells that include functionality as both an antioxidant and a regulator of oxidant-sensitive signal transduction.[1]


  1. Dual Role of Peroxiredoxin I in Macrophage-derived Foam Cells. Conway, J.P., Kinter, M. J. Biol. Chem. (2006) [Pubmed]
WikiGenes - Universities