The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Repair of DNA Damage Induced by Bile Salts in Salmonella enterica.

Exposure of Salmonella enterica to sodium cholate, sodium deoxycholate, sodium chenodeoxycholate, sodium glychocholate, sodium taurocholate, or sodium glycochenodeoxycholate induces the SOS response, indicating that the DNA-damaging activity of bile resides in bile salts. Bile increases the frequency of GC --> AT transitions and induces the expression of genes belonging to the OxyR and SoxRS regulons, suggesting that bile salts may cause oxidative DNA damage. S. enterica mutants lacking both exonuclease III (XthA) and endonuclease IV (Nfo) are bile sensitive, indicating that S. enterica requires base excision repair (BER) to overcome DNA damage caused by bile salts. Bile resistance also requires DinB polymerase, suggesting the need of SOS-associated translesion DNA synthesis. Certain recombination functions are also required for bile resistance, and a key factor is the RecBCD enzyme. The extreme bile sensitivity of RecB(-), RecC(-), and RecA(-) RecD(-) mutants provides evidence that bile-induced damage may impair DNA replication.[1]

References

  1. Repair of DNA Damage Induced by Bile Salts in Salmonella enterica. Prieto, A.I., Ramos-Morales, F., Casades??s, J. Genetics (2006) [Pubmed]
 
WikiGenes - Universities