The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

deoxycholate     (4R)-4-[ (3R,5R,8S,9S,10S,12S,13R,14S,1 7R)...

Synonyms: Droxolan, Pyrochol, Degalol, Septochol, Cholerebic, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Desoxycholic acid

 

Psychiatry related information on Desoxycholic acid

  • Colchicine also affected this change in response latency after the DOC treatment [5].
  • No modifications in PLCbeta1 solubility in PBS-, deoxycholate- and sodium dodecylsulphate-soluble fractions have been observed in CJD when compared with controls [6].
  • It is postulated that the secondary bile acid, sodium deoxycholate, could have a role in the production of colonic motor activity in the rabbit [7].
 

High impact information on Desoxycholic acid

 

Chemical compound and disease context of Desoxycholic acid

 

Biological context of Desoxycholic acid

 

Anatomical context of Desoxycholic acid

  • Reconstitution of Rh (D) antigen activity from human erythrocyte membranes solubilized by deoxycholate [12].
  • The NF-kappaB transcription factor was affinity-purified from deoxycholate (DOC)-treated cytosol of HeLa cells and shown to contain both a 50-kappaD polypeptide (p50) with a DNA-binding specificity identical to that of nuclear NF-kappaB and a 65-kappaD protein (p65) lacking DNA binding activity [21].
  • However, DOC rapidly increased labeled inositol phosphate and diacylglycerol accumulation in colonic epithelial cells [22].
  • Deoxycholate (0.5-5 mM) increased superoxide dismutase sensitive chemiluminescence 2-10-fold and stimulated superoxide production as measured by cytochrome c reduction in colonic mucosal scrapings or crypt epithelium [23].
  • In the rat jejunum 2.5% bovine serum albumin blocked the secretion of water and electrolytes induced by 2 mM deoxycholate, whereas 5% ovalbumin, which does not bind bile acids, had no effect [24].
 

Associations of Desoxycholic acid with other chemical compounds

  • 4-(2-[IH-imidazol-1-yl]ethoxy) benzoic acid hydrochloride UK 37,248, which selectively reduced colonic TXB2 to undetectable levels without altering PGE or 12-HETE, had no effect on control or deoxycholate-induced increases in mucosal ornithine decarboxylase activity or [3H]Thd incorporation into DNA [25].
  • Small amounts (0.1-0.5 mM) of deoxycholate enhanced amylase secretion, which had been induced by submaximal doses of carbachol or cholecystokinin octapeptide, without affecting the maximal levels of these reactions from isolated rat pancreatic acini [18].
  • Responses to deoxycholate were abolished by the superoxide dismutase mimetic CuII (3,5 diisopropylsalicylic acid)2 (CuDIPS), and by phenidone or esculetin, which inhibit both lipoxygenase and cyclooxygenase activities [23].
  • Excretion and hepatic metabolism of exogenous [14C]deoxycholate were determined, quantitative and qualitative analyses of fecal bile acids were performed, and ability of fecal bacteria to metabolize cholate to deoxycholate in vitro was measured both in cirrhotic patients and in controls [26].
  • In contrast, 3 mM deoxycholate and greater than 10 mM taurocholate caused severe altertion of colonic epithelium and inhibited water absorption [27].
 

Gene context of Desoxycholic acid

 

Analytical, diagnostic and therapeutic context of Desoxycholic acid

References

  1. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. Reddy, B.S., Narasawa, T., Weisburger, J.H., Wynder, E.L. J. Natl. Cancer Inst. (1976) [Pubmed]
  2. Effects of phenobarbital and secondary bile acids on liver, gallbladder, and pancreas carcinogenesis initiated by N-nitrosobis (2-hydroxypropyl)amine in hamsters. Makino, T., Obara, T., Ura, H., Kinugasa, T., Kobayashi, H., Takahashi, S., Konishi, Y. J. Natl. Cancer Inst. (1986) [Pubmed]
  3. Role of platelet-activating factor in hemodynamic derangements in an acute rodent pancreatic model. Ais, G., López-Farre, A., Gomez-Garre, D.N., Novo, C., Romeo, J.M., Braquet, P., López-Novoa, J.M. Gastroenterology (1992) [Pubmed]
  4. The site-specific delivery of ursodeoxycholic acid to the rat colon by sulfate conjugation. Rodrigues, C.M., Kren, B.T., Steer, C.J., Setchell, K.D. Gastroenterology (1995) [Pubmed]
  5. Destruction and reorganization of the receptor membrane in labellar chemosensory cells of the blowfly. Recovery of responses to sugar after destruction. Ninomiya, M., Ozaki, M., Kashihara, Y., Morita, H. J. Gen. Physiol. (1986) [Pubmed]
  6. Metabotropic glutamate receptor/phospholipase C pathway: a vulnerable target to Creutzfeldt-Jakob disease in the cerebral cortex. Rodríguez, A., Freixes, M., Dalfó, E., Martín, M., Puig, B., Ferrer, I. Neuroscience (2005) [Pubmed]
  7. The effects of bile acids on colonic motility in the rabbit. Falconer, J.D., Smith, A.N., Eastwood, M.A. Quarterly journal of experimental physiology and cognate medical sciences. (1980) [Pubmed]
  8. Porcine diacylglycerol kinase sequence has zinc finger and E-F hand motifs. Sakane, F., Yamada, K., Kanoh, H., Yokoyama, C., Tanabe, T. Nature (1990) [Pubmed]
  9. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Podack, E.R., Dennert, G. Nature (1983) [Pubmed]
  10. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Baeuerle, P.A., Baltimore, D. Science (1988) [Pubmed]
  11. Cadmium increases tissue factor (coagulation factor III) activity by facilitating its reassociation with lipids. Carson, S.D., Konigsberg, W.H. Science (1980) [Pubmed]
  12. Reconstitution of Rh (D) antigen activity from human erythrocyte membranes solubilized by deoxycholate. Lorusso, D.J., Green, F.A. Science (1975) [Pubmed]
  13. Effect of deoxycholic acid ingestion on bile acid metabolism and biliary lipid secretion in normal subjects. LaRusso, N.F., Szczepanik, P.A., Hofmann, A.F. Gastroenterology (1977) [Pubmed]
  14. Factor XIII cross-linking of fibronectin at cellular matrix assembly sites. Barry, E.L., Mosher, D.F. J. Biol. Chem. (1988) [Pubmed]
  15. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. Leenders, A.C., Reiss, P., Portegies, P., Clezy, K., Hop, W.C., Hoy, J., Borleffs, J.C., Allworth, T., Kauffmann, R.H., Jones, P., Kroon, F.P., Verbrugh, H.A., de Marie, S. AIDS (1997) [Pubmed]
  16. Bile acid metabolism by fresh human colonic contents: a comparison of caecal versus faecal samples. Thomas, L.A., Veysey, M.J., French, G., Hylemon, P.B., Murphy, G.M., Dowling, R.H. Gut (2001) [Pubmed]
  17. Effect of long term lactulose ingestion on secondary bile salt metabolism in man: potential protective effect of lactulose in colonic carcinogenesis. van Berge Henegouwen, G.P., van der Werf, S.D., Ruben, A.T. Gut (1987) [Pubmed]
  18. Enhancement of secretagogue-induced phosphoinositide turnover and amylase secretion by bile acids in isolated rat pancreatic acini. Takeyama, Y., Nakanishi, H., Ohyanagi, H., Saitoh, Y., Kaibuchi, K., Takai, Y. J. Clin. Invest. (1986) [Pubmed]
  19. Heparin-enhanced plasma phospholipase A2 activity and prostacyclin synthesis in patients undergoing cardiac surgery. Nakamura, H., Kim, D.K., Philbin, D.M., Peterson, M.B., Debros, F., Koski, G., Bonventre, J.V. J. Clin. Invest. (1995) [Pubmed]
  20. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Debruyne, P.R., Witek, M., Gong, L., Birbe, R., Chervoneva, I., Jin, T., Domon-Cell, C., Palazzo, J.P., Freund, J.N., Li, P., Pitari, G.M., Schulz, S., Waldman, S.A. Gastroenterology (2006) [Pubmed]
  21. A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Baeuerle, P.A., Baltimore, D. Genes Dev. (1989) [Pubmed]
  22. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. Craven, P.A., Pfanstiel, J., DeRubertis, F.R. J. Clin. Invest. (1987) [Pubmed]
  23. Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. Craven, P.A., Pfanstiel, J., DeRubertis, F.R. J. Clin. Invest. (1986) [Pubmed]
  24. Protection by dietary proteins against the effects of bile acids on rat jejunum and stomach. Kruidenier, J.F., Ammon, H.V., Charaf, U.K., Walter, L.G. Gastroenterology (1985) [Pubmed]
  25. Bile salt stimulation of colonic epithelial proliferation. Evidence for involvement of lipoxygenase products. DeRubertis, F.R., Craven, P.A., Saito, R. J. Clin. Invest. (1984) [Pubmed]
  26. Deoxycholate metabolism in alcoholic cirrhosis. Knodell, R.G., Kinsey, M., Boedeker, E.C., Collin, D.P. Gastroenterology (1976) [Pubmed]
  27. Morphological and functional effects of bile salts on rat colon. Saunders, D.R., Hedges, J.R., Sillery, J., Esther, L., Matsumura, K., Rubin, C.E. Gastroenterology (1975) [Pubmed]
  28. Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Qiao, L., Han, S.I., Fang, Y., Park, J.S., Gupta, S., Gilfor, D., Amorino, G., Valerie, K., Sealy, L., Engelhardt, J.F., Grant, S., Hylemon, P.B., Dent, P. Mol. Cell. Biol. (2003) [Pubmed]
  29. Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Yoon, J.H., Werneburg, N.W., Higuchi, H., Canbay, A.E., Kaufmann, S.H., Akgul, C., Edwards, S.W., Gores, G.J. Cancer Res. (2002) [Pubmed]
  30. Relationship between N-methyl-D-aspartate receptor NR1 splice variants and NR2 subunits. Blahos, J., Wenthold, R.J. J. Biol. Chem. (1996) [Pubmed]
  31. Molecular assembly of cystic fibrosis transmembrane conductance regulator in plasma membrane. Li, C., Roy, K., Dandridge, K., Naren, A.P. J. Biol. Chem. (2004) [Pubmed]
  32. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Setchell, K.D., Rodrigues, C.M., Clerici, C., Solinas, A., Morelli, A., Gartung, C., Boyer, J. Gastroenterology (1997) [Pubmed]
  33. Altered rate of fibronectin matrix assembly by deletion of the first type III repeats. Sechler, J.L., Takada, Y., Schwarzbauer, J.E. J. Cell Biol. (1996) [Pubmed]
  34. Trophoblast modulation of maternal allogeneic recognition. McIntyre, J.A., Faulk, W.P. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  35. Calcification of isolated matrix vesicles and reconstituted vesicles from fetal bovine cartilage. Hsu, H.H., Anderson, H.C. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  36. Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Rittenhouse, S.E. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
 
WikiGenes - Universities