The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effects of glycogen synthase kinase 3beta and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats.

Repeated administration of morphine is associated with the development of tolerance, yet the mechanism underlying this phenomenon is still poorly understood. Recent evidence implicating glycogen synthase kinase 3 (GSK3) in opioid receptor signaling pathways has prompted us to investigate its role in morphine tolerance. Administration of 10 mg/kg morphine i.p. to Wistar rats twice daily for 8 days resulted in complete tolerance to its analgesic effects as measured by the tail-flick test. When injections of morphine were preceded by intrathecal (i.t.) administration of either an inhibitor of GSK3 [(3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763) or 6-bromoindirubin-3'oxime] or an inhibitor of cyclin-dependent kinase ( Cdk), roscovitine, development of tolerance to morphine analgesia was completely abolished. In addition, a single i.t. injection of either kinase inhibitor was able to restore in a dose-dependent manner the analgesic effect of morphine in morphine-tolerant rats. None of the inhibitors in doses used in the present study had analgesic effects of their own nor an effect on the analgesic potency of morphine. Repeated i.t. administration of either inhibitor had caused an increase in abundance of GSK-3beta phosphorylated at Ser(9) in the dorsal lumbar part of the spinal cord of rats that were chronically treated with morphine. Furthermore, reversal of morphine tolerance by a single injection of either inhibitor was always associated with increased abundance of phospho-GSK3beta. In conclusion, our data indicate that chronic morphine treatment activates a highly efficient pathway by means of which Cdk5 regulates GSK3beta activity.[1]

References

  1. Effects of glycogen synthase kinase 3beta and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats. Parkitna, J.R., Obara, I., Wawrzczak-Bargiela, A., Makuch, W., Przewlocka, B., Przewlocki, R. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
 
WikiGenes - Universities