The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Specific and distinct determinants mediate membrane binding and lipid raft incorporation of HIV-1(SF2) Nef.

Membrane association is believed to be a prerequisite for the biological activity of the HIV-1 pathogenicity factor Nef. Attachment to cellular membranes as well as incorporation into detergent-insoluble microdomains (lipid rafts) require the N-terminal myristoylation of Nef. However, this modification is not sufficient for sustained membrane association and a specific raft-targeting signal for Nef has not yet been identified. Using live cell confocal microscopy and membrane fractionation analyses, we found that the N-terminal anchor domain (aa 1-61) is necessary and sufficient for efficient membrane binding of Nef from HIV-1(SF2). Within this domain, highly conserved lysine and arginine residues significantly contributed to Nef's membrane association and localization. Plasma membrane localization of Nef was also governed by an additional membrane-targeting motif between residues 40 and 61. Importantly, two lysines at positions 4 and 7 were not essential for the overall membrane association but critically contributed to Nef's incorporation into lipid raft domains. Cell surface receptor downmodulation was largely unaffected by mutations of all N-terminal basic residues, while the association of Nef with Pak2 kinase activity and its ability to augment virion infectivity correlated with its lysine-mediated raft incorporation. In contrast, all basic residues were required for efficient HIV-1 replication in primary human T lymphocytes but did not contribute to the incorporation of Nef into HIV-1 virions. Together, these results unravel that Nef's membrane association is governed by a complex pattern of signature motifs that differentially contribute to individual Nef activities. The identification of a critical raft targeting determinant and the functional characterization of a membrane-bound, non-raft-associated Nef variant indicate raft incorporation as a regulatory mechanism that determines the biological activity of distinct subpopulations of Nef in HIV-infected cells.[1]

References

  1. Specific and distinct determinants mediate membrane binding and lipid raft incorporation of HIV-1(SF2) Nef. Giese, S.I., Woerz, I., Homann, S., Tibroni, N., Geyer, M., Fackler, O.T. Virology (2006) [Pubmed]
 
WikiGenes - Universities