The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of death and survival in astrocytes by ADP activating P2Y(1) and P2Y(12) receptors.

ADP is the endogenous agonist for both P2Y(1) and P2Y(12) receptors, which are important therapeutic targets. It was previously demonstrated that ADP and a synthetic agonist, 2-methylthioadenosine 5'-diphosphate (2MeSADP), can induce apoptosis by activating the human P2Y(1) receptor heterologously expressed in astrocytoma cells. However, it was not known whether the P2Y(12) receptor behaved similarly. We demonstrated here that, unlike with the G(q)-coupled P2Y(1) receptor, activation of the G(i)-coupled P2Y(12) receptor does not induce apoptosis. Furthermore, activation of the P2Y(12) receptor by either ADP or 2MeSADP significantly attenuates the tumor necrosis factor alpha (TNFalpha)-induced apoptosis in 1321N1 human astrocytoma cells. This protective effect was blocked by the P2Y(12) receptor antagonist 2-methylthioAMP and by inhibitors of phospholipase C (U73122) and protein kinase C (chelerythrin), but not by the P2Y(1) receptor antagonist MRS2179. Toward a greater mechanistic understanding, we showed that hP2Y(12) receptor activation by 10nM 2MeSADP, activates Erk1/2, Akt, and JNK by phosphorylation. However, at a lower protective concentration of 100pM 2MeSADP, activation of the hP2Y(12) receptor involves only phosphorylated Erk1/2, but not Akt or JNK. This activation is hypothesized as the major mechanism for the protective effect induced by P2Y(12) receptor activation. Apyrase did not affect the ability of TNFalpha to induce apoptosis in hP2Y(12)-1321N1 cells, suggesting that the endogenous nucleotides are not involved. These results may have important implications for understanding the signaling cascades that follow activation of P2Y(1) and P2Y(12) receptors and their opposing effects on cell death pathways.[1]

References

  1. Regulation of death and survival in astrocytes by ADP activating P2Y(1) and P2Y(12) receptors. Mamedova, L.K., Gao, Z.G., Jacobson, K.A. Biochem. Pharmacol. (2006) [Pubmed]
 
WikiGenes - Universities