Functional expression of murine multidrug resistance in Xenopus laevis oocytes.
The development of multidrug resistance ( MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here we report the functional expression of a member of the murine mdr family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of [3H]vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.[1]References
- Functional expression of murine multidrug resistance in Xenopus laevis oocytes. Castillo, G., Vera, J.C., Yang, C.P., Horwitz, S.B., Rosen, O.M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg