The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1L9FMD     1-[(2R,4S)-4-[(2S,4S,5S,6S)- 4-amino-5...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Daunomycin

 

Psychiatry related information on Daunomycin

  • Electron transfer occurs from tryptophan(s) to daunomycin with two reaction times, 1 ps and 6 ps, depending on the local complex structure [6].
  • Employing adriamycin and daunomycin as model drugs, evidence is presented that a differential effect on host defense mechanisms can be important in determining the therapeutic efficacy of antitumorals [7].
 

High impact information on Daunomycin

  • Using the highly AT-specific fluorochrome daunomycin, a longitudinal optical signal called AT queue, thought to arise from a line-up of the highly AT-rich scaffold-associated regions (SARs) by the scaffolding, was identified in native chromosomes [8].
  • Verapamil and two other calcium channel blockers, as well as vinblastine and daunomycin, each slowed the release and increased the accumulation of chloroquine by resistant (but not susceptible) Plasmodium falciparum [9].
  • When daunomycin was coupled to the hapten conjugate of ovalbumin by an acid-sensitive cis-aconityl group, it caused hapten-specific impairment of immunocompetence in murine B lymphocytes in vitro and in vivo [10].
  • Furthermore, the response by T lymphocytes to concanavalin A in vitro was selectively eliminated by a conjugate between daunomycin plus the acid-sensitive spacer and a monoclonal antibody specific for T cells [10].
  • Differential fluorescent staining of human chromosomes with daunomycin and adriamycin--the d-bands [11].
 

Chemical compound and disease context of Daunomycin

 

Biological context of Daunomycin

 

Anatomical context of Daunomycin

  • Dimethyltriazenoimidazole carboxamide (20--200 mg/kg ip) and adriamycin (10--15 mg/kg iv) did not impair natural cytotoxicity per unit number of lymphoid cells, daunomycin (10 mg/kg iv) caused borderline impairment of NK acitivity, and N-trifluoroacetyl-adriamycin-14-valerate (80 mg/kg iv) markedly suppressed natural cytotoxicity [21].
  • Jejunal and ileal brush border membrane vesicles, but not basolateral membrane vesicles, manifested adenosine triphosphate (ATP)-dependent transport of daunomycin, a substrate for Gp170, and contained a approximately 170-kilodalton protein that reacts with anti-Gp170 monoclonal antibody [22].
  • The occurrence of such nonlamellar structures favors the association of these peripheral proteins with the plasma membrane and prevents daunomycin-induced dissociation [23].
  • Adriamycin and daunomycin generate reactive oxygen compounds in erythrocytes [1].
  • Furthermore, leukocyte counts of the transgenic mice treated with daunomycin did not fall, indicating that their bone marrow was resistant to the cytotoxic effect of the drug [2].
 

Associations of Daunomycin with other chemical compounds

 

Gene context of Daunomycin

  • Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells [28].
  • Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis [28].
  • BITC, PEITC, and 1-NITC significantly increased the 2-h accumulation of DNM in MCF-7/ADR (P-gp overexpression), PANC-1 (MRP1 overexpression), and human colon adenocarcinoma Caco-2 cells (except for 1-NITC) [29].
  • Inhibitors of P-glycoprotein-mediated daunomycin transport in rat liver canalicular membrane vesicles [30].
  • The magnitude and persistence of Pgp function inhibition induced by the RMA was further examined by only pulsing the cells with the RMA and growing them in RMA-free medium before the DAU retention assay ('pre-RMA' treatment) [31].
 

Analytical, diagnostic and therapeutic context of Daunomycin

References

  1. Adriamycin and daunomycin generate reactive oxygen compounds in erythrocytes. Henderson, C.A., Metz, E.N., Balcerzak, S.P., Sagone, A.L. Blood (1978) [Pubmed]
  2. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Galski, H., Sullivan, M., Willingham, M.C., Chin, K.V., Gottesman, M.M., Pastan, I., Merlino, G.T. Mol. Cell. Biol. (1989) [Pubmed]
  3. Photoaffinity labeling of the Sarcoma 180 cell surface by daunomycin. Yee, G., Carey, M., Tritton, T.R. Cancer Res. (1984) [Pubmed]
  4. Cytotoxic effects of daunomycin-fatty acid complexes on rat hepatoma cells. Deutsch, H.F., Tsukada, Y., Sasaki, T., Hirai, H. Cancer Res. (1983) [Pubmed]
  5. A comparison of the effects of daunomycin and adriamycin on various DNA polymerases. Zunino, F., Gambetta, R., Di Marco, A., Zaccara, A., Luoni, G. Cancer Res. (1975) [Pubmed]
  6. Femtosecond dynamics of a drug-protein complex: daunomycin with Apo riboflavin-binding protein. Zhong, D., Pal, S.K., Wan, C., Zewail, A.H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  7. The heterogeneity of the interaction between cancer chemotherapeutic agents and host resistance mechanisms. Spreafico, F. Recent Results Cancer Res. (1980) [Pubmed]
  8. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Saitoh, Y., Laemmli, U.K. Cell (1994) [Pubmed]
  9. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Krogstad, D.J., Gluzman, I.Y., Kyle, D.E., Oduola, A.M., Martin, S.K., Milhous, W.K., Schlesinger, P.H. Science (1987) [Pubmed]
  10. Specific immunosuppression by immunotoxins containing daunomycin. Diener, E., Diner, U.E., Sinha, A., Xie, S., Vergidis, R. Science (1986) [Pubmed]
  11. Differential fluorescent staining of human chromosomes with daunomycin and adriamycin--the d-bands. Lin, C.C., Van de Sande, J.H. Science (1975) [Pubmed]
  12. Effect of galactose on interaction of N-(2-hydroxypropyl)methacrylamide copolymers with hepatoma cells in culture: preliminary application to an anticancer agent, daunomycin. O'Hare, K.B., Hume, I.C., Scarlett, L., Chytrý, V., Kopecková, P., Kopecek, J., Duncan, R. Hepatology (1989) [Pubmed]
  13. Erythrocyte entrapment of daunomycin by amphotericin B without hemolysis. Kitao, T., Hattori, K. Cancer Res. (1980) [Pubmed]
  14. Aclacinomycin A in the treatment of experimental proliferative vitreoretinopathy. Efficacy and toxicity in the rabbit eye. Steinhorst, U.H., Chen, E.P., Hatchell, D.L., Samsa, G.P., Saloupis, P.T., Westendorf, J., Machemer, R. Invest. Ophthalmol. Vis. Sci. (1993) [Pubmed]
  15. Flavonoid dimers as bivalent modulators for P-glycoprotein-based multidrug resistance: synthetic apigenin homodimers linked with defined-length poly(ethylene glycol) spacers increase drug retention and enhance chemosensitivity in resistant cancer cells. Chan, K.F., Zhao, Y., Burkett, B.A., Wong, I.L., Chow, L.M., Chan, T.H. J. Med. Chem. (2006) [Pubmed]
  16. Possible role of the multidrug resistance-associated protein (MRP) in chemoresistance of human melanoma cells. Berger, W., Hauptmann, E., Elbling, L., Vetterlein, M., Kokoschka, E.M., Micksche, M. Int. J. Cancer (1997) [Pubmed]
  17. Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Quigley, G.J., Wang, A.H., Ughetto, G., van der Marel, G., van Boom, J.H., Rich, A. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  18. Measurement of spontaneous and therapeutic agent-induced apoptosis with BCL-2 protein expression in acute myeloid leukemia. Banker, D.E., Groudine, M., Norwood, T., Appelbaum, F.R. Blood (1997) [Pubmed]
  19. Membrane vesicle formation due to acquired mitoxantrone resistance in human gastric carcinoma cell line EPG85-257. Dietel, M., Arps, H., Lage, H., Niendorf, A. Cancer Res. (1990) [Pubmed]
  20. Differences in the pharmacokinetics of daunomycin in normal and leukemic rats. Nooter, K., Sonneveld, P., Martens, A. Cancer Res. (1985) [Pubmed]
  21. Effect of chemotherapeutic agents on natural cell-mediated cytotoxicity in mice. Mantovani, A., Luini, W., Peri, G., Vecchi, A., Spreafico, F. J. Natl. Cancer Inst. (1978) [Pubmed]
  22. The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Hsing, S., Gatmaitan, Z., Arias, I.M. Gastroenterology (1992) [Pubmed]
  23. Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures. Escribá, P.V., Sastre, M., García-Sevilla, J.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. Direct relationship between remission duration in acute myeloid leukemia and cell cycle kinetics: a leukemia intergroup study. Raza, A., Preisler, H.D., Day, R., Yasin, Z., White, M., Lykins, J., Kukla, C., Barcos, M., Bennett, J., Browman, G. Blood (1990) [Pubmed]
  25. Effects of verapamil on daunomycin cellular retention and cytotoxicity in P388 leukemic cells. Yanovich, S., Preston, L. Cancer Res. (1984) [Pubmed]
  26. Experience with 2-chlorodeoxyadenosine in previously untreated children with newly diagnosed acute myeloid leukemia and myelodysplastic diseases. Krance, R.A., Hurwitz, C.A., Head, D.R., Raimondi, S.C., Behm, F.G., Crews, K.R., Srivastava, D.K., Mahmoud, H., Roberts, W.M., Tong, X., Blakley, R.L., Ribeiro, R.C. J. Clin. Oncol. (2001) [Pubmed]
  27. In vitro evaluation of the new anticancer agents KT6149, MX-2, SM5887, menogaril, and liblomycin using cisplatin- or adriamycin-resistant human cancer cell lines. Ohe, Y., Nakagawa, K., Fujiwara, Y., Sasaki, Y., Minato, K., Bungo, M., Niimi, S., Horichi, N., Fukuda, M., Saijo, N. Cancer Res. (1989) [Pubmed]
  28. Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 levels and an alteration of the Bax/Bcl-2 ratio. Javelaud, D., Besancon, F. J. Biol. Chem. (2002) [Pubmed]
  29. Effects of benzyl-, phenethyl-, and alpha-naphthyl isothiocyanates on P-glycoprotein- and MRP1-mediated transport. Hu, K., Morris, M.E. Journal of pharmaceutical sciences. (2004) [Pubmed]
  30. Inhibitors of P-glycoprotein-mediated daunomycin transport in rat liver canalicular membrane vesicles. Kwon, Y., Kamath, A.V., Morris, M.E. Journal of pharmaceutical sciences. (1996) [Pubmed]
  31. Extent and persistence of P-glycoprotein inhibition in multidrug-resistant P388 cells after exposure to resistance-modifying agents. Boesch, D., Loor, F. Anticancer Drugs (1994) [Pubmed]
  32. Chemotherapy by intravenous administration of conjugates of daunomycin with monoclonal and conventional anti-rat alpha-fetoprotein antibodies. Tsukada, Y., Hurwitz, E., Kashi, R., Sela, M., Hibi, N., Hara, A., Hirai, H. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  33. Brain drug delivery of small molecules using immunoliposomes. Huwyler, J., Wu, D., Pardridge, W.M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  34. Expression of the mdr-1/P-170 gene in patients with acute lymphoblastic leukemia. Rothenberg, M.L., Mickley, L.A., Cole, D.E., Balis, F.M., Tsuruo, T., Poplack, D.G., Fojo, A.T. Blood (1989) [Pubmed]
 
WikiGenes - Universities