The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: Response of cold-responsive genes and osmolyte accumulation.

Phospholipase D (PLD; EC 3.1.4.4) plays an important role in membrane lipid hydrolysis and in mediation of plant responses to a wide range of stresses. PLDalpha1 abrogation through antisense suppression in Arabidopsis thaliana resulted in a significant increase in freezing tolerance of both non-acclimated and cold-acclimated plants. Although non-acclimated PLDalpha1-deficient plants did not show the activation of cold-responsive C-repeat/dehydration-responsive element binding factors (CBFs) and their target genes (COR47 and COR78), they did accumulate osmolytes to much higher levels than did the non-acclimated wild-type plants. However, a stronger expression of COR47 and COR78 in response to cold acclimation and to especially freezing was observed in PLDalpha1-deficient plants. Furthermore, a slower activation of CBF1 was observed in response to cold acclimation in these plants compared to the wild-type plants. Typically, cold acclimation resulted in a higher accumulation of osmolytes in PLDalpha1-deficient plants than in wild-type plants. Inhibition of PLD activity by using lysophosphatidylethanolamine (LPE) also increased freezing tolerance of Arabidopsis, albeit to a lesser extent than did the PLD antisense suppression. Exogenous LPE induced expression of COR15a and COR47 in the absence of cold stimulus. These results suggest that PLDalpha1 plays a key role in freezing tolerance of Arabidopsis by modulating the cold-responsive genes and accumulation of osmolytes.[1]

References

 
WikiGenes - Universities