Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition.
Regulation of the levels of tyrosine phosphorylation is essential to maintain the functions of proteins in different signaling pathways and other cellular systems, but how the steady-state levels of tyrosine phosphorylation are coordinated in different cellular systems to initiate complex cellular functions remains a formidable challenge. The receptor protein tyrosine phosphatase (RPTP)beta/zeta is a transmembrane tyrosine phosphatase whose substrates include proteins important in intracellular and transmembrane protein-signaling pathways, cytoskeletal structure, cell-cell adhesion, endocytosis, and chromatin remodeling. Pleiotrophin (PTN the protein and Ptn the gene) is a ligand for RPTPbeta/zeta; PTN inactivates RPTPbeta/zeta, leaving unchecked the continued endogenous activity of tyrosine kinases that increase phosphorylation of the substrates of RPTPbeta/zeta at sites dephosphorylated by RPTPbeta/zeta in cells not stimulated by PTN. Thus, through the regulation of the tyrosine phosphatase activity of RPTPbeta/zeta, the PTN/RPTPbeta/zeta signaling pathway coordinately regulates the levels of tyrosine phosphorylation of proteins in many cellular systems. We now demonstrate that PTN disrupts cytoskeletal protein complexes, ablates calcium-dependent homophilic cell-cell adhesion, stimulates ubiquitination and degradation of N-cadherin, reorganizes the actin cytoskeleton, and induces a morphological epithelial-mesenchymal transition (EMT) in PTN-stimulated U373 cells. The data suggest that increased tyrosine phosphorylation of the different substrates of RPTPbeta/zeta in PTN-stimulated cells alone is sufficient to coordinately stimulate the different functions needed for an EMT; it is possible that PTN initiates an EMT in cells at sites where PTN is expressed in development and in malignant cells that inappropriately express Ptn.[1]References
- Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition. Perez-Pinera, P., Alcantara, S., Dimitrov, T., Vega, J.A., Deuel, T.F. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg