Son of sevenless directly links the robo receptor to rac activation to control axon repulsion at the midline.
Son of sevenless (Sos) is a dual specificity guanine nucleotide exchange factor ( GEF) that regulates both Ras and Rho family GTPases and thus is uniquely poised to integrate signals that affect both gene expression and cytoskeletal reorganization. Here, using genetics, biochemistry, and cell biology, we demonstrate that Sos is recruited to the plasma membrane, where it forms a ternary complex with the Roundabout receptor and the SH3-SH2 adaptor protein Dreadlocks (Dock) to regulate Rac-dependent cytoskeletal rearrangement in response to the Slit ligand. Intriguingly, the Ras and Rac- GEF activities of Sos can be uncoupled during Robo-mediated axon repulsion; Sos axon guidance function depends on its Rac- GEF activity, but not its Ras- GEF activity. These results provide in vivo evidence that the Ras and RhoGEF domains of Sos are separable signaling modules and support a model in which Robo recruits Sos to the membrane via Dock to activate Rac during midline repulsion.[1]References
- Son of sevenless directly links the robo receptor to rac activation to control axon repulsion at the midline. Yang, L., Bashaw, G.J. Neuron (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg