The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Flavonoid dimers as bivalent modulators for P-glycoprotein-based multidrug resistance: synthetic apigenin homodimers linked with defined-length poly(ethylene glycol) spacers increase drug retention and enhance chemosensitivity in resistant cancer cells.

Much effort has been spent on searching for better P-glycoprotein- (P-gp-) based multidrug resistance ( MDR) modulators. Our approach was to target the binding sites of P-gp using dimers of dietary flavonoids. A series of apigenin-based flavonoid dimers, linked by poly(ethylene glycol) chains of various lengths, have been synthesized. These flavonoid dimers modulate drug chemosensitivity and retention in breast and leukemic MDR cells with the optimal number of ethylene glycol units equal to 2-4. Compound 9d bearing four ethylene glycol units increased drug accumulation in drug-resistant cells and enhanced cytotoxicity of paclitaxel, doxorubicin, daunomycin, vincristine, and vinblastine in drug-resistant breast cancer and leukemia cells in vitro, resulting in reduction of IC50 by 5-50 times. This compound also stimulated P-gp's ATPase activity by 3.3-fold. Its modulating activity was presumably by binding to the substrate binding sites of P-gp and disrupting drug efflux.[1]


WikiGenes - Universities