The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nuclear sequestration of {delta}-sarcoglycan disrupts the nuclear localization of lamin A/C and emerin in cardiomyocytes.

Sarcoglycan is a membrane-associated protein complex found at the plasma membrane of cardiomyocytes and skeletal myofibers. Recessive mutations of delta-sarcoglycan that eliminate expression, and therefore function, lead to cardiomyopathy and muscular dystrophy by producing instability of the plasma membrane. A dominant missense mutation in the gene encoding delta-sarcoglycan was previously shown to associate with dilated cardiomyopathy in humans. To investigate the mechanism of dominantly inherited cardiomyopathy, we generated transgenic mice that express the S151A delta-sarcoglycan mutation in the heart using the alpha-myosin heavy-chain gene promoter. Similar to the human delta-sarcoglycan gene mutation, S151A delta-sarcoglycan transgenic mice developed dilated cardiomyopathy at a young age with enhanced lethality. Instead of placement at the plasma membrane, delta-sarcoglycan was found in the nucleus of S151A delta-sarcoglycan cardiomyocytes. Retention of delta-sarcoglycan in the nucleus was accompanied by partial nuclear sequestration of beta- and gamma-sarcoglycan. Additionally, the nuclear-membrane-associated proteins, lamin A/C and emerin, were mislocalized throughout the nucleoplasm. Therefore, the S151A delta-sarcoglycan gene mutation acts in a dominant negative manner to produce trafficking defects that disrupt nuclear localization of lamin A/C and emerin, thus linking together two common mechanisms of inherited cardiomyopathy.[1]


  1. Nuclear sequestration of {delta}-sarcoglycan disrupts the nuclear localization of lamin A/C and emerin in cardiomyocytes. Heydemann, A., Demonbreun, A., Hadhazy, M., Earley, J.U., McNally, E.M. Hum. Mol. Genet. (2007) [Pubmed]
WikiGenes - Universities