Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure.
The [PSI(+)] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Sup35p, a subunit of the translation termination factor. Using solid-state NMR we have examined the structure of amyloid fibrils formed in vitro from purified recombinant Sup35(1-253), consisting of the glutamine- and asparagine-rich N-terminal 123-residue prion domain (N) and the adjacent 130-residue highly charged M domain. Measurements of magnetic dipole-dipole couplings among (13)C nuclei in a series of Sup35NM fibril samples, (13)C-labeled at backbone carbonyl sites of Tyr, Leu, or Phe residues or at side-chain methyl sites of Ala residues, indicate intermolecular (13)C-(13)C distances of approximately 0.5 nm for nearly all sites in the N domain. Certain sites in the M domain also exhibit intermolecular distances of approximately 0.5 nm. These results indicate that an in-register parallel beta-sheet structure underlies the [PSI(+)] prion phenomenon.[1]References
- Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Shewmaker, F., Wickner, R.B., Tycko, R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg