The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Lack of hypoxia-inducible factor-1alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling.

Oxygen tension is critical for proliferation of human and murine midbrain-derived neural precursor cells (mNPCs). Here, we conditionally inactivated the hypoxia-responsive transcription factor hypoxia-inducible factor-1alpha ( HIF-1alpha) in murine NPCs to determine its role in proliferation, survival, and dopaminergic differentiation in vitro as well as survival of murine dopaminergic neurons in vivo. HIF-1alpha conditional knock-out ( HIF-1alpha CKO) mNPCs showed midbrain-specific impairment of survival and proliferation. Dopaminergic differentiation of HIF-1alpha CKO mNPCs in vitro was markedly reduced. Expression of vascular endothelial growth factor (VEGF) mRNA was reduced in HIF-1alpha CKO mNPCs, whereas erythropoietin signaling was not affected. Treatment of HIF-1alpha CKO mNPCs with 50 ng/ml VEGF partially recovered proliferation and dopaminergic differentiation in vitro. In substantia nigra (SN) of adult HIF-1alpha CKO mice, protein levels of dopaminergic marker molecules such as tyrosine hydroxylase ( TH) and aldehyde dehydrogenase were reduced by 41 and 61%, respectively. The cell survival marker Bcl-2 was reduced by 58% while caspase-3 was activated. Nonbiased stereological cell counts of TH-positive neurons in SN of young adult HIF-1alpha CKO mice revealed a reduction of 31% compared with cre/wt mice (in which the wild-type Hif1a allele is expressed in parallel with the Cre recombinase allele). However, we found no impairment of striatal dopamine concentrations or locomotor behavior. In conclusion, HIF-1alpha seems to be a transcription factor relevant to the development and survival of substantia nigra dopaminergic neurons involving VEGF signaling.[1]

References

  1. Lack of hypoxia-inducible factor-1alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. Milosevic, J., Maisel, M., Wegner, F., Leuchtenberger, J., Wenger, R.H., Gerlach, M., Storch, A., Schwarz, J. J. Neurosci. (2007) [Pubmed]
 
WikiGenes - Universities