The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of the Transport and Protein Levels of the Inositol Phosphorylceramide Mannosyltransferases Csg1 and Csh1 by the Ca2+- binding Protein Csg2.

Complex sphingolipids in yeast are known to function in cellular adaptation to environmental changes. One of the yeast complex sphingolipids, mannosylinositol phosphorylceramide (MIPC), is produced by the redundant inositol phosphorylceramide (IPC) mannosyltransferases Csg1 and Csh1. The Ca(2+)-binding protein Csg2 can form a complex with either Csg1 or Csh1 and is considered to act as a regulatory subunit. However, the role of Csg2 in MIPC synthesis has remained unclear. In this study, we found that Csg1 and Csh1 are N-glycosylated with core-type and mannan-type structures, respectively. Further identification of the glycosylated residues suggests that both Csg1 and Csh1 exhibit membrane topology with their C termini in the cytosol and their mannosyltransferase domains in the lumen. After complexing with Csg2, both Csg1 and Csh1 function in the Golgi, and then are delivered to the vacuole for degradation. However, uncomplexed Csh1 cannot exit from the endoplasmic reticulum. We also demonstrated that Ca(2+) stimulates IPC-to-MIPC conversion, because of a Csg2-dependent increase in Csg1 levels. Thus, Csg2 has several regulatory functions for Csg1 and Csh1, including stability, transport, and gene expression.[1]


WikiGenes - Universities