The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

rpoN Gene of Pseudomonas aeruginosa Alters Its Susceptibility to Quinolones and Carbapenems.

The alternative sigma factor sigma(54) has been implicated in diverse functions within the cells. In this study, we have constructed an rpoN mutant of Pseudomonas aeruginosa and investigated its importance as a target for antimicrobial agents, such as quinolones and carbapenems. The stationary-phase cells of the rpoN mutant displayed a survival rate approximately 15 times higher than that of the wild-type cells in the presence of quinolones and carbapenems. The stationary phase led to substantial production of pyoverdine by the P. aeruginosa rpoN mutant. Pyoverdine synthesis correlated with decreased susceptibility to antimicrobial agents. Quantitative real-time PCR revealed that stationary-phase cells of the rpoN mutant grown without an antimicrobial agent had approximately 4- to 140- and 2- to 14-fold-higher levels of transcripts of the pvdS and vqsR genes, respectively, than the wild-type strain. In the presence of an antimicrobial agent, levels of pvdS and vqsR transcripts were elevated 400- and 5-fold, respectively, in comparison to the wild-type levels. Flow cytometry assays using a green fluorescent protein reporter demonstrated increased expression of the vqsR gene in the rpoN mutant throughout growth. A pvdS mutant of P. aeruginosa, deficient in pyoverdine production, was shown to be susceptible to biapenem. These findings suggest that rpoN is involved in tolerance to antimicrobial agents in P. aeruginosa and that its tolerant effect is partly dependent on increased pyoverdine production and vqsR gene expression.[1]


  1. rpoN Gene of Pseudomonas aeruginosa Alters Its Susceptibility to Quinolones and Carbapenems. Viducic, D., Ono, T., Murakami, K., Katakami, M., Susilowati, H., Miyake, Y. Antimicrob. Agents Chemother. (2007) [Pubmed]
WikiGenes - Universities