The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

NOX5 variants are functionally active in endothelial cells.

NADPH oxidases have been identified as sources of reactive oxygen species (ROS) in vascular cells. In addition to the initially described enzyme containing gp91phox (NOX2), several homologues to NOX2 have been identified. Whereas NOX1, NOX2, and NOX4 are expressed in endothelial cells, a functional role of NOX5 containing additional N-terminal calcium-binding domains of varying sequences has not been reported in these cells. NOX5 protein was found in the endoplasmic reticulum of human microvascular endothelial cells (HMEC-1) and in the vascular wall. HMEC-1 cells expressed NOX5beta and NOX5delta as well as a variant lacking calcium-binding domains (NOX5S). NOX5beta and NOX5S increased basal ROS levels. Ionomycin exclusively enhanced NOX5beta-mediated ROS production. Although p22phox, when overexpressed, interacted with both NOX5 proteins, it was not essential for NOX5-mediated ROS production. NOX5 proteins stimulated endothelial cell proliferation and the formation of capillary-like structures whereas depletion of NOX5 by siRNA prevented these responses to thrombin. These data show that endothelial cells express different NOX5 variants including NOX5S lacking calcium-binding domains. NOX5 proteins are functional, promoting endothelial ROS production, proliferation, and the formation of capillary-like structures and contribute to the endothelial response to thrombin. These findings suggest that NOX5 variants play a novel role in controlling ROS-dependent processes in the vasculature.[1]

References

  1. NOX5 variants are functionally active in endothelial cells. Belaiba, R.S., Djordjevic, T., Petry, A., Diemer, K., Bonello, S., Banfi, B., Hess, J., Pogrebniak, A., Bickel, C., Görlach, A. Free Radic. Biol. Med. (2007) [Pubmed]
 
WikiGenes - Universities