The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Dose point kernel for boron-11 decay and the cellular S values in boron neutron capture therapy.

The study of the radiobiology of boron neutron capture therapy is based on the cellular level dosimetry of boron-10's thermal neutron capture reaction 10B(n,alpha)7Li, in which one 1.47 MeV helium-4 ion and one 0.84 MeV lithium-7 ion are spawned. Because of the chemical preference of boron-10 carrier molecules, the dose is heterogeneously distributed in cells. In the present work, the (scaled) dose point kernel of boron-11 decay, called 11B-DPK, was calculated by GEANT4 Monte Carlo simulation code. The DPK curve drops suddenly at the radius of 4.26 microm, the continuous slowing down approximation (CSDA) range of a lithium-7 ion. Then, after a slight ascending, the curve decreases to near zero when the radius goes beyond 8.20 microm, which is the CSDA range of a 1.47 MeV helium-4 ion. With the DPK data, S values for nuclei and cells with the boron-10 on the cell surface are calculated for different combinations of cell and nucleus sizes. The S value for a cell radius of 10 microm and a nucleus radius of 5 microm is slightly larger than the value published by Tung et al. [Appl. Radiat. Isot. 61, 739-743 (2004)]. This result is potentially more accurate than the published value since it includes the contribution of a lithium-7 ion as well as the alpha particle.[1]

References

 
WikiGenes - Universities