The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Alpha Particles

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Alpha Particles

 

High impact information on Alpha Particles

  • Collisions between cosmic rays (energetic protons and alpha-particles) and carbon, nitrogen and oxygen in the interstellar medium have been considered to be the main source of lithium, beryllium and boron, through fragmentation of the larger nuclei [6].
  • To address this problem we have developed novel techniques for studying haemopoietic cells irradiated with environmentally relevant doses of alpha-particles from a plutonium-238 source [7].
  • A helium line emission at a wavelength of 584 angstroms was detected and may be attributable to charge transfer of solar wind alpha particles in the cometary coma [8].
  • BACKGROUND: Studies of groups of patients given injections of the alpha-emitting x-ray contrast medium Thorotrast may provide information on human alpha-ray carcinogenesis [9].
  • In the absence of caffeine, the repair of alpha radiation lesions is almost twice as great as for gamma radiation [10].
 

Chemical compound and disease context of Alpha Particles

  • The high incidence of lung cancer in cigarette smokers is attributed to the cumulative alpha-radiation dose at bifurcations from indoor radon and thoron progeny--218Po, 214Po, 212Po, and 212Bi--plus that from 210Po in 210Pb-enriched smoke particles [11].
  • Risk estimates for internally deposited alpha particles in humans, such as those for alpha-particle-induced leukemia, have been derived from data on the toxicity of (232)Th in patients injected with Thorotrast [12].
  • Adult C3H X 101 hybrid male mice were injected intravenously with 4 muCi of 239Pu citrate per kg body weight and examined for evidence of cytogenetic damage to the testis after exposures of 21, 28 and 34 weeks, with average doses from alpha-particles estimated as 13, 18 and 18 rad respectively (mean dose rate 0.00006 rad/min) [13].
  • Radiologists have excess leukemia and other malignancy from external x-ray; uranium and other miners have excess lung cancer from internal alpha radiation; luminous dial painters have excess osteogenic sarcomas; and uranium mill workers appear to have excess lymphomas [14].
  • Third, we conducted combination treatment with 4.8 kGy of alpha-particles, i.e., boron 10 neutron captured beam induced by Kyoto University Research Nuclear Reactor operated at 5 MW, and hyperthermia at 52 degrees C, which caused the synergistic killing effect on D. radiodurans wet cells [15].
 

Biological context of Alpha Particles

  • We propose that if the p53 tumor suppressor gene is a target for the carcinogenic action of alpha-particle radiation, loss of suppressor function may occur preferentially by mechanisms such as intrachromosomal deletions, rather than by base substitution mutations [16].
  • The increase in Hprt-deficient variants demonstrated following X- as well as alpha-particle and neutron irradiation indicates that there is a difference in the LET-dependence of delayed gene mutations and higher-order cytogenetic effects [17].
  • The examination of these tumors may provide evidence as to whether specific p53 point mutations are relevant in alpha-particle carcinogenesis [18].
  • Survival and DNA damage in Chinese hamster V79 cells exposed to alpha particles emitted by DNA-incorporated astatine-211 [19].
  • MATERIALS AND METHODS: Aerobic, aqueous solutions of plasmid DNA were irradiated at 277K with 238Pu alpha-particles or USX in the presence of 10(-4) to 0.33 mol dm(-3) Tris and the yields of SSB and DSB determined by gel electrophoresis [20].
 

Anatomical context of Alpha Particles

 

Associations of Alpha Particles with chemical compounds

 

Gene context of Alpha Particles

  • At the two lowest doses examined, aberrations were induced in 4-9% of wild-type cells and 36-55% of Xrcc5-/- cells, whereas only 2-3% of the nuclei were traversed by an alpha particle and thus received any radiation exposure [29].
  • Likewise, the levels of WAF1 in A-172 and A-172/neo cells reached a plateau at 3-10 h and 6-24 h after C-beam (3.0 Gy) and alpha-particle (4.5 Gy) irradiation respectively [30].
  • High rate of small TP53 mutations and infrequent loss of heterozygosity in malignant liver tumors associated with thorotrast: implications for alpha-particle carcinogenesis [31].
  • A novel alpha-particle emitting monoclonal antibody construct targeting the external domain of prostate-specific membrane antigen (PSMA) was prepared and evaluated in vitro and in vivo [3].
  • In addition, more cells exposed to low doses of alpha radiation had increased p53 protein levels than would be predicted based on the number of nuclei expected to be traversed by an alpha-particle, suggesting that alpha-particles cause genetic damage by mechanisms in addition to direct interactions with DNA [32].
 

Analytical, diagnostic and therapeutic context of Alpha Particles

References

  1. Lung cancer induced in hamsters by low doses of alpha radiation from polonium-210. Little, J.B., Kennedy, A.R., McGandy, R.B. Science (1975) [Pubmed]
  2. Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Azzam, E.I., de Toledo, S.M., Little, J.B. Cancer Res. (2003) [Pubmed]
  3. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. McDevitt, M.R., Barendswaard, E., Ma, D., Lai, L., Curcio, M.J., Sgouros, G., Ballangrud, A.M., Yang, W.H., Finn, R.D., Pellegrini, V., Geerlings, M.W., Lee, M., Brechbiel, M.W., Bander, N.H., Cordon-Cardo, C., Scheinberg, D.A. Cancer Res. (2000) [Pubmed]
  4. Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression. Ballangrud, A.M., Yang, W.H., Palm, S., Enmon, R., Borchardt, P.E., Pellegrini, V.A., McDevitt, M.R., Scheinberg, D.A., Sgouros, G. Clin. Cancer Res. (2004) [Pubmed]
  5. p53 mutations in tumor and non-tumor tissues of thorotrast recipients: a model for cellular selection during radiation carcinogenesis in the liver. Iwamoto, K.S., Fujii, S., Kurata, A., Suzuki, M., Hayashi, T., Ohtsuki, Y., Okada, Y., Narita, M., Takahashi, M., Hosobe, S., Doishita, K., Manabe, T., Hata, S., Murakami, I., Hata, S., Itoyama, S., Akatsuka, S., Ohara, N., Iwasaki, K., Akabane, H., Fujihara, M., Seyama, T., Mori, T. Carcinogenesis (1999) [Pubmed]
  6. Production and evolution of light elements in active star-forming regions. Cassé, M., Lehoucq, R., Vangioni-Flam, E. Nature (1995) [Pubmed]
  7. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Kadhim, M.A., Macdonald, D.A., Goodhead, D.T., Lorimore, S.A., Marsden, S.J., Wright, E.G. Nature (1992) [Pubmed]
  8. Detection of soft X-rays and a sensitive search for noble gases in comet Hale-Bopp. Krasnopolsky, V.A., Mumma, M.J., Abbott, M., Flynn, B.C., Meech, K.J., Yeomans, D.K., Feldman, P.D., Cosmovici, C.B. Science (1997) [Pubmed]
  9. Cancer incidence among Danish Thorotrast-exposed patients. Andersson, M., Storm, H.H. J. Natl. Cancer Inst. (1992) [Pubmed]
  10. Mutagenesis and repair by low doses of alpha radiation in mammalian cells. Puck, T.T., Johnson, R., Webb, P., Cui, H., Valdez, J.G., Crissman, H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. alpha-Radiation dose at bronchial bifurcations of smokers from indoor exposure to radon progeny. Martell, E.A. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  12. Revised organ partition of thorium-232 in thorotrast patients. Ishikawa, Y., Humphreys, J.A., Collier, C.G., Priest, N.D., Kato, Y., Mori, T., Machinami, R. Radiat. Res. (1999) [Pubmed]
  13. Cytogenetic effects of protracted exposures to alpha-particles from plutonium-239 and to gamma-rays from cobalt-60 compared in male mice. Searle, A.G., Beechey, C.V., Green, D., Humphreys, E.R. Mutat. Res. (1976) [Pubmed]
  14. Occupational exposure to radiation as a cancer hazard. Archer, V.E. Cancer (1977) [Pubmed]
  15. Synergistic cell-killing effect of a combination of hyperthermia and heavy ion beam irradiation: in expectation of a breakthrough in the treatment of refractory cancers (review). Imamura, M., Sawada, S., Kasahara-Imamura, M., Harima, K., Harada, K. Int. J. Mol. Med. (2002) [Pubmed]
  16. p53 gene mutation analysis in tumors of patients exposed to alpha-particles. Hollstein, M., Bartsch, H., Wesch, H., Kure, E.H., Mustonen, R., Mühlbauer, K.R., Spiethoff, A., Wegener, K., Wiethege, T., Müller, K.M. Carcinogenesis (1997) [Pubmed]
  17. Delayed appearance of radiation-induced mutations at the Hprt locus in murine hemopoietic cells. Harper, K., Lorimore, S.A., Wright, E.G. Exp. Hematol. (1997) [Pubmed]
  18. Mutations in the tumor suppressor gene p53 in human liver cancer induced by alpha-particles. Andersson, M., Jönsson, M., Nielsen, L.L., Vyberg, M., Visfeldt, J., Storm, H.H., Wallin, H. Cancer Epidemiol. Biomarkers Prev. (1995) [Pubmed]
  19. Survival and DNA damage in Chinese hamster V79 cells exposed to alpha particles emitted by DNA-incorporated astatine-211. Walicka, M.A., Vaidyanathan, G., Zalutsky, M.R., Adelstein, S.J., Kassis, A.I. Radiat. Res. (1998) [Pubmed]
  20. Yields of SSB and DSB induced in DNA by Al(K) ultrasoft X-rays and alpha-particles: comparison of experimental and simulated yields. Fulford, J., Nikjoo, H., Goodhead, D.T., O'Neill, P. Int. J. Radiat. Biol. (2001) [Pubmed]
  21. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Kozak, R.W., Atcher, R.W., Gansow, O.A., Friedman, A.M., Hines, J.J., Waldmann, T.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  22. Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Narayanan, P.K., Goodwin, E.H., Lehnert, B.E. Cancer Res. (1997) [Pubmed]
  23. Radioimmunotherapy using vascular targeted 213Bi: the role of tumor necrosis factor alpha in the development of pulmonary fibrosis. Davis, I.A., Kennel, S.J. Clin. Cancer Res. (1999) [Pubmed]
  24. Radon and lung carcinogenesis: mutability of p53 codons 249 and 250 to 238Pu alpha-particles in human bronchial epithelial cells. Hussain, S.P., Kennedy, C.H., Amstad, P., Lui, H., Lechner, J.F., Harris, C.C. Carcinogenesis (1997) [Pubmed]
  25. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Borchardt, P.E., Yuan, R.R., Miederer, M., McDevitt, M.R., Scheinberg, D.A. Cancer Res. (2003) [Pubmed]
  26. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Azzam, E.I., De Toledo, S.M., Spitz, D.R., Little, J.B. Cancer Res. (2002) [Pubmed]
  27. X-ray microanalysis of fluoride distribution in microfracture calluses in cancellous iliac bone from osteoporotic patients treated with fluoride and untreated. Boivin, G., Grousson, B., Meunier, P.J. J. Bone Miner. Res. (1991) [Pubmed]
  28. PCC technique reveals severe chromatin lesions and repair in G2-arrested cells after alpha irradiation. Hieber, L., Lücke-Huhle, C. Exp. Cell Res. (1983) [Pubmed]
  29. Involvement of the nonhomologous end joining DNA repair pathway in the bystander effect for chromosomal aberrations. Little, J.B., Nagasawa, H., Li, G.C., Chen, D.J. Radiat. Res. (2003) [Pubmed]
  30. WAF1 accumulation by carbon-ion beam and alpha-particle irradiation in human glioblastoma cultured cells. Takahashi, A., Ohnishi, K., Tsuji, K., Matsumoto, H., Aoki, H., Wang, X., Tamamoto, T., Yukawa, O., Furusawa, Y., Ejima, Y., Tachibana, A., Ohnishi, T. Int. J. Radiat. Biol. (2000) [Pubmed]
  31. High rate of small TP53 mutations and infrequent loss of heterozygosity in malignant liver tumors associated with thorotrast: implications for alpha-particle carcinogenesis. Wada, I., Horiuchi, H., Mori, M., Ishikawa, Y., Fukumoto, M., Mori, T., Kato, Y., Kitagawa, T., Machinami, R. Radiat. Res. (1999) [Pubmed]
  32. Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain. Hickman, A.W., Jaramillo, R.J., Lechner, J.F., Johnson, N.F. Cancer Res. (1994) [Pubmed]
  33. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Zalutsky, M.R., Vaidyanathan, G. Curr. Pharm. Des. (2000) [Pubmed]
  34. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Barth, R.F., Soloway, A.H., Goodman, J.H., Gahbauer, R.A., Gupta, N., Blue, T.E., Yang, W., Tjarks, W. Neurosurgery (1999) [Pubmed]
  35. The reticuloendothelial system and macrophage-monocyte system in thorotrast patients. Abe, H., Kawahara, T., Gondou, K., Sakisaka, S., Sata, M. Radiat. Res. (1999) [Pubmed]
  36. Vascular-targeted radioimmunotherapy with the alpha-particle emitter 211At. Kennel, S.J., Mirzadeh, S., Eckelman, W.C., Waldmann, T.A., Garmestani, K., Yordanov, A.T., Stabin, M.G., Brechbiel, M.W. Radiat. Res. (2002) [Pubmed]
  37. Cumulative genetic damage in hematopoietic stem cells in a patient with a 40-year exposure to alpha particles emitted by thorium dioxide. Littlefield, L.G., Travis, L.B., Sayer, A.M., Voelz, G.L., Jensen, R.H., Boice, J.D. Radiat. Res. (1997) [Pubmed]
 
WikiGenes - Universities