The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular cloning of an 1-aminocyclopropane-1-carboxylate synthase from senescing carnation flower petals.

Synthetic oligonucleotides based on the sequence of 1-aminocyclopropane-1-carboxylate (ACC) synthase from tomato were used to prime the synthesis and amplification of a 337 bp tomato ACC synthase cDNA by polymerase chain reaction (PCR). This PCR product was used to screen a cDNA library prepared from mRNA isolated from senescing carnation flower petals. Two cDNA clones were isolated which represented the same mRNA. The longer of the two clones (CARACC3) contained a 1950 bp insert with a single open reading frame of 516 amino acids encoding a protein of 58 kDa. The predicted protein from the carnation ACC synthase cDNA was 61%, 61%, 64%, and 51% identical to the deduced proteins from zucchini squash, winter squash, tomato, and apple, respectively. Genomic DNA gel blot analysis indicated the presence of at least a second gene in carnation which hybridized to CARACC3 under conditions of low stringency. ACC synthase mRNA accumulates during senescence of carnation flower petals concomitant with the increase in ethylene production and ACC synthase enzyme activity. Ethylene induced the accumulation of ACC synthase mRNA in presenescent petals. Wound-induced ethylene production in leaves was not associated with an increase in ACC synthase mRNA represented by CARACC3. These results indicate that CARACC3 represents an ACC synthase transcript involved in autocatalytic ethylene production in senescing flower petals.[1]

References

 
WikiGenes - Universities