The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Single-turnover Kinetic Analysis of the Mutagenic Potential of 8-Oxo-7,8-dihydro-2'-deoxyguanosine during Gap-filling Synthesis Catalyzed by Human DNA Polymerases lambda and beta.

In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) damage, many DNA polymerases exhibit a dual coding potential which facilitates efficient incorporation of matched dCTP or mismatched dATP. This also holds true for the insertion of 8-oxodGTP opposite template bases dC and dA. Employing single-turnover kinetic methods, we examined human DNA polymerase beta and its novel X-family homolog, human DNA polymerase lambda, to determine which nucleotide and template base was preferred when encountering 8-oxodG and 8-oxodGTP, respectively. While DNA polymerase beta preferentially incorporated dCTP over dATP, DNA polymerase lambda did not modulate a preference for either dCTP or dATP when opposite 8-oxodG in single-nucleotide gapped DNA, as incorporation proceeded with essentially equal efficiency and probability. Moreover, DNA polymerase lambda is more efficient than DNA polymerase beta to fill this oxidized single-nucleotide gap. Insertion of 8-oxodGTP by both DNA polymerases lambda and beta occurred predominantly against template dA, thereby reiterating how the asymmetrical design of the polymerase active site differentially accommodated the anti and syn conformations of 8-oxodG and 8-oxodGTP. Although the electronegative oxygen at the C8 position of 8-oxodG may induce DNA structural perturbations, human DNA ligase I was found to effectively ligate the incorporated 8-oxodGMP to a downstream strand, which sealed the nicked DNA. Consequently, the erroneous nucleotide incorporations catalyzed by DNA polymerases lambda and beta as well as the subsequent ligation catalyzed by a DNA ligase during base excision repair are a threat to genomic integrity.[1]

References

 
WikiGenes - Universities