The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Activation mechanisms of STAT5 by oncogenic Flt3-ITD.

Mutations in the receptor tyrosine kinase Flt3 represent a very common genetic lesion in acute myeloid leukemia (AML). Internal tandem duplication (ITD) mutations clustered in the juxtamembrane domain are the most frequent and best characterized mutations found in Flt3. Oncogenic activation of Flt3 by ITD mutations is known to activate aberrant signaling including activation of STAT5 and repression of myeloid transcription factors Pu.1 and c/EBP-alpha. However, the mechanisms of STAT5 activation by Flt3-ITD remain unclear. Using small molecule inhibitors and cell lines deficient for Src family kinases or Jak2 or Tyk2, here we show that Flt3-ITD-induced STAT5 activation is independent of Src or Jak kinases. Also, overexpression of SOCS1, an inhibitor of Jak kinases, inhibited IL-3- but not Flt3-ITD-mediated STAT5 activation. Furthermore, in vitro kinase assays revealed that STAT5 is a direct target of Flt3. Taken together, our data provide the mechanistic basis of STAT5 activation by Flt3-ITD.[1]

References

  1. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Choudhary, C., Brandts, C., Schwable, J., Tickenbrock, L., Sargin, B., Ueker, A., Böhmer, F.D., Berdel, W.E., Müller-Tidow, C., Serve, H. Blood (2007) [Pubmed]
 
WikiGenes - Universities