The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Modeling tardive dyskinesia: predictive 5-HT2C receptor antagonist treatment.

Tardive dyskinesia (TD), a movement disorder produced by long-term treatment with a classical antipsychotic drug, is generally considered to be a disorder of dopamine (DA) systems, since classical antipsychotics are potent DA D(2) receptor blockers. Also, acute DA D(1) agonist treatment of rats is known to produce vacuous chewing movements (VCMs), a behavioral feature resembling the oral dyskinesia that is so prominent in most instances of TD. In this paper we outline a series of studies in a new animal model of TD in which DA D(1) receptor supersensitivity was produced by neonatal 6-hydroxydopamine (6-OHDA) -induced destruction of nigrostriatal DA fibers. In rats so-lesioned 5-HT receptor supersensitivity is additionally produced, and in fact 5-HT receptor antagonists attenuate enhanced DA D(1) induction of VCMs. Moreover, in 6-OHDA-lesioned rats treated with haloperidol for one year, there a 2-fold increase in numbers of VCMs (vs intact rats treated with haloperidol); and this high frequency of VCMs persists for more than 6 months after discontinuing haloperidol treatment. During this stage, 5-HT(2) receptor antagonists, but not DA D(1) receptor antagonists, attenuate the incidence of VCMs. This series of findings implicates the 5-HT neuronal phenotype in TD, and promotes 5-HT(2) receptor antagonists, more specifically 5-HT(2C) receptor antagonists, as a rational treatment approach for TD in humans.[1]

References

  1. Modeling tardive dyskinesia: predictive 5-HT2C receptor antagonist treatment. Kostrzewa, R.M., Huang, N.Y., Kostrzewa, J.P., Nowak, P., Brus, R. Neurotox. Res (2007) [Pubmed]
 
WikiGenes - Universities