The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Homocysteine and glutathione peroxidase-1.

Mildly elevated homocysteine levels (Hcy) increase the risk for atherothrombotic vascular disease in the coronary, cerebrovascular, and peripheral arterial circulations. The molecular mechanisms responsible for decreased bioavailability of endothelium-derived nitric oxide (NO) by Hcy involve an increase of vascular oxidant stress and inhibition of important antioxidant capacity. Glutathione peroxidase-1 (GPx-1), a selenocysteine-containing antioxidant enzyme, may be a key target of Hcy's deleterious actions, and several experimental and clinical studies have demonstrated a complex relationship between plasma total homocysteine (tHcy), GPx-1, and endothelial dysfunction. Hcy may promote endothelial dysfunction, in part by decreasing GPx-1 expression; however, there is evidence to suggest that overexpression of GPx-1 can compensate for these effects. This review summarizes the current knowledge of the metabolism of Hcy, the effects of hyperhomocysteinemia observed in in vitro and in vivo models that lead to endothelial dysfunction and the possible mechanisms for these actions, and the role of GPx-1 in the pathogenesis of Hcy-induced cardiovascular disease (CVD).[1]

References

  1. Homocysteine and glutathione peroxidase-1. Lubos, E., Loscalzo, J., Handy, D.E. Antioxid. Redox Signal. (2007) [Pubmed]
 
WikiGenes - Universities