The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Immunological mapping of fine molecular surface structures of citrate synthase enzymes from different cell types.

Citrate synthase (EC, which is present in all living organisms as a key enzyme in aerobic energy metabolism, is one of the most highly phylogenetically conserved enzymes known in terms of its primary and active site structure. However, in terms of other parameters such as in vitro stability, tolerance to changes in pH, degree of self-polymerization, etc., citrate synthases from different sources are markedly different. These divergences can be observed even between isoforms of the enzyme within the same species. Data documenting these diversities suggest that a high degree of difference in tertiary structures may occur. Therefore, the surface profiles of citrate synthase enzymes from yeast, pig, rat, tomato and Escherichia coli were investigated with immunological methods using monoclonal antibody families generated against either pig citrate synthase (alpha-PCS) or yeast citrate synthase-2 (alpha-YCS-2). A high degree of homology of enzyme epitopes was detected on the mitochondrial citrate synthases originating from yeast, tomato, pig and rat cells. Major differences were found between the hexameric citrate synthase originating from E. coli compared with those dimeric forms prepared from eukaryotic cells. Only modest similarities were detected between the highly homologous peroxisomal and mitochondrial yeast citrate synthases. Furthermore, a point mutation of one of the catalytic residues (H274R on recombinant pig and H313R on yeast enzyme) of mitochondrial citrate synthase ( CS-1) resulted in a significant increase in immunological similarity with the peroxisomal isoenzyme (CS-2). These findings are discussed in terms of the possible mechanism of evolution of CS-2 in yeast.[1]


  1. Immunological mapping of fine molecular surface structures of citrate synthase enzymes from different cell types. Nemeth, P., Small, W.C., Evans, C.T., Zhi, W., Persson, L.O., Srere, P.A. J. Mol. Recognit. (1991) [Pubmed]
WikiGenes - Universities