The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Clinical implications of the basic defects in Cockayne syndrome and xeroderma pigmentosum and the DNA lesions responsible for cancer, neurodegeneration and aging.

Cancer, aging, and neurodegeneration are all associated with DNA damage and repair in complex fashions. Aging appears to be a cell and tissue-wide process linked to the insulin-dependent pathway in several DNA repair deficient disorders, especially in mice. Cancer and neurodegeneration appear to have complementary relationships to DNA damage and repair. Cancer arises from surviving cells, or even stem cells, that have down-regulated many pathways, including apoptosis, that regulate genomic stability in a multi-step process. Neurodegeneration however occurs in nondividing neurons in which the persistence of apoptosis in response to reactive oxygen species is, itself, pathological. Questions that remain open concern: sources and chemical nature of naturally occurring DNA damaging agents, especially whether mitochondria are the true source; the target tissues for DNA damage and repair; do the human DNA repair deficient diseases delineate specific pathways of DNA damage relevant to clinical outcomes; if naturally occurring reactive oxygen species are pathological in human repair deficient disease, would anti-oxidants or anti-apoptotic agents be feasible therapeutic agent?[1]

References

 
WikiGenes - Universities