The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cockayne Syndrome

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cockayne Syndrome

 

Psychiatry related information on Cockayne Syndrome

  • DNA repair defects in XP-D are associated with two additional, quite different diseases; XP, a sun-sensitive and cancer-prone repair disorder, and Cockayne syndrome (CS), a photosensitive condition characterized by physical and mental retardation and wizened facial appearance [6].
 

High impact information on Cockayne Syndrome

 

Chemical compound and disease context of Cockayne Syndrome

 

Biological context of Cockayne Syndrome

  • Loss of a nonenzymatic function of XPG results in defective transcription-coupled repair (TCR), Cockayne syndrome (CS), and early death, but the molecular basis for these phenotypes is unknown [17].
  • The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex [18].
  • Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress [19].
  • A severe inhibition of transcription occurs in strains that are defective in the removal of AP sites and that also lack the RAD26 gene, a homolog of the human Cockayne syndrome group B (CSB) gene, and, importantly, a dramatic rise in mutagenesis is incurred in such strains [20].
  • Point mutations in the XPD gene lead either to the cancer-prone repair syndrome XP, sometimes in combination with a second repair condition; Cockayne syndrome; or the non-cancer-prone brittle-hair disorder trichothiodystrophy [21].
 

Anatomical context of Cockayne Syndrome

 

Gene context of Cockayne Syndrome

 

Analytical, diagnostic and therapeutic context of Cockayne Syndrome

References

  1. Relationships between DNA repair and transcription. Friedberg, E.C. Annu. Rev. Biochem. (1996) [Pubmed]
  2. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Nouspikel, T., Lalle, P., Leadon, S.A., Cooper, P.K., Clarkson, S.G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  3. Ultraviolet hypersensitivity of Cockayne syndrome lymphoblastoid lines--the effects of exogenous beta-nicotinamide adenine dinucleotide. Otsuka, F., Kukita, A. Photochem. Photobiol. (1986) [Pubmed]
  4. UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. van der Horst, G.T., Meira, L., Gorgels, T.G., de Wit, J., Velasco-Miguel, S., Richardson, J.A., Kamp, Y., Vreeswijk, M.P., Smit, B., Bootsma, D., Hoeijmakers, J.H., Friedberg, E.C. DNA Repair (Amst.) (2002) [Pubmed]
  5. Effect of growth arrest on the doubling potential of human fibroblasts in vitro: a possible influence of the donor. Diatloff-Zito, C., Macieira-Coelho, A. In vitro. (1982) [Pubmed]
  6. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy. Weeda, G., Eveno, E., Donker, I., Vermeulen, W., Chevallier-Lagente, O., Taïeb, A., Stary, A., Hoeijmakers, J.H., Mezzina, M., Sarasin, A. Am. J. Hum. Genet. (1997) [Pubmed]
  7. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Le Page, F., Kwoh, E.E., Avrutskaya, A., Gentil, A., Leadon, S.A., Sarasin, A., Cooper, P.K. Cell (2005) [Pubmed]
  8. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. implications for Cockayne syndrome. Lee, S.K., Yu, S.L., Prakash, L., Prakash, S. Cell (2002) [Pubmed]
  9. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Takebayashi, Y., Pourquier, P., Zimonjic, D.B., Nakayama, K., Emmert, S., Ueda, T., Urasaki, Y., Kanzaki, A., Akiyama, S.I., Popescu, N., Kraemer, K.H., Pommier, Y. Nat. Med. (2001) [Pubmed]
  10. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Yu, A., Fan, H.Y., Liao, D., Bailey, A.D., Weiner, A.M. Mol. Cell (2000) [Pubmed]
  11. DNA damage stabilizes interaction of CSB with the transcription elongation machinery. van den Boom, V., Citterio, E., Hoogstraten, D., Zotter, A., Egly, J.M., van Cappellen, W.A., Hoeijmakers, J.H., Houtsmuller, A.B., Vermeulen, W. J. Cell Biol. (2004) [Pubmed]
  12. Ultraviolet-induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Parris, C.N., Kraemer, K.H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  13. The cockayne syndrome group B gene product is involved in cellular repair of 8-hydroxyadenine in DNA. Tuo, J., Jaruga, P., Rodriguez, H., Dizdaroglu, M., Bohr, V.A. J. Biol. Chem. (2002) [Pubmed]
  14. Nucleotide excision repair 3' endonuclease XPG stimulates the activity of base excision repairenzyme thymine glycol DNA glycosylase. Bessho, T. Nucleic Acids Res. (1999) [Pubmed]
  15. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells. Barrett, S.F., Robbins, J.H., Tarone, R.E., Kraemer, K.H. Mutat. Res. (1991) [Pubmed]
  16. Transient expression of a plasmid gene, a tool to study DNA repair in human cells: defect of DNA repair in Cockayne syndrome; one thymine cyclobutane dimer is sufficient to block transcription. Klocker, H., Schneider, R., Burtscher, H.J., Auer, B., Hirsch-Kauffmann, M., Schweiger, M. Eur. J. Cell Biol. (1986) [Pubmed]
  17. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Sarker, A.H., Tsutakawa, S.E., Kostek, S., Ng, C., Shin, D.S., Peris, M., Campeau, E., Tainer, J.A., Nogales, E., Cooper, P.K. Mol. Cell (2005) [Pubmed]
  18. The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. van Gool, A.J., Citterio, E., Rademakers, S., van Os, R., Vermeulen, W., Constantinou, A., Egly, J.M., Bootsma, D., Hoeijmakers, J.H. EMBO J. (1997) [Pubmed]
  19. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Thorslund, T., von Kobbe, C., Harrigan, J.A., Indig, F.E., Christiansen, M., Stevnsner, T., Bohr, V.A. Mol. Cell. Biol. (2005) [Pubmed]
  20. The stalling of transcription at abasic sites is highly mutagenic. Yu, S.L., Lee, S.K., Johnson, R.E., Prakash, L., Prakash, S. Mol. Cell. Biol. (2003) [Pubmed]
  21. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. de Boer, J., Donker, I., de Wit, J., Hoeijmakers, J.H., Weeda, G. Cancer Res. (1998) [Pubmed]
  22. Reduced RNA polymerase II transcription in intact and permeabilized Cockayne syndrome group B cells. Balajee, A.S., May, A., Dianov, G.L., Friedberg, E.C., Bohr, V.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  23. Factors influencing the removal of thymine glycol from DNA in gamma-irradiated human cells. Weinfeld, M., Xing, J.Z., Lee, J., Leadon, S.A., Cooper, P.K., Le, X.C. Prog. Nucleic Acid Res. Mol. Biol. (2001) [Pubmed]
  24. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Hamdi, M., Kool, J., Cornelissen-Steijger, P., Carlotti, F., Popeijus, H.E., van der Burgt, C., Janssen, J.M., Yasui, A., Hoeben, R.C., Terleth, C., Mullenders, L.H., van Dam, H. Oncogene (2005) [Pubmed]
  25. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Le Page, F., Kwoh, E.E., Avrutskaya, A., Gentil, A., Leadon, S.A., Sarasin, A., Cooper, P.K. Cell (2000) [Pubmed]
  26. Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. Jansen, L.E., den Dulk, H., Brouns, R.M., de Ruijter, M., Brandsma, J.A., Brouwer, J. EMBO J. (2000) [Pubmed]
  27. DNA repair and transcriptional effects of mutations in TFIIH in Drosophila development. Merino, C., Reynaud, E., Vázquez, M., Zurita, M. Mol. Biol. Cell (2002) [Pubmed]
  28. Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. Bhatia, P.K., Verhage, R.A., Brouwer, J., Friedberg, E.C. J. Bacteriol. (1996) [Pubmed]
  29. Rodent complementation group 8 (ERCC8) corresponds to Cockayne syndrome complementation group A. Itoh, T., Shiomi, T., Shiomi, N., Harada, Y., Wakasugi, M., Matsunaga, T., Nikaido, O., Friedberg, E.C., Yamaizumi, M. Mutat. Res. (1996) [Pubmed]
  30. Clinical characteristics of three patients with UVs syndrome, a photosensitive disorder with defective DNA repair. Itoh, T., Yamaizumi, M., Ichihashi, M., Hiro-Oka, M., Matsui, T., Matsuno, M., Ono, T. Br. J. Dermatol. (1996) [Pubmed]
 
WikiGenes - Universities