The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla.

Hypoxia inducible factor (HIF)-1alpha, a transcription factor, is abundantly expressed in the renal medulla and regulates many oxygen-sensitive genes such as nitric oxide synthase, cyclooxygenase-2, and heme oxygenase-1. Given the important roles of these genes in the control of arterial pressure, the present study was to test the hypothesis that HIF-1alpha-mediated gene activation serves as an antihypertensive pathway by regulating renal medullary function and sodium excretion. HIF-1alpha decoy oligodeoxynucleotides (ODNs) or scrambled ODNs were transfected into the renal medulla in uninephrectomized Sprague-Dawley rats. Two weeks after ODN transfection, the HIF-1alpha binding activities were significantly inhibited by 45%, and high salt-induced increases of nitric oxide synthase-2 and heme oxygenase-1 transcriptions were also inhibited by 70% and 61% in the renal medulla from decoy rats. The natriuretic responses and increases of renal medullary blood flow responding to the elevations of renal perfusion pressure were significantly blunted by 50% and 37% in decoy rats. Intravenously acute sodium loading increased medullary blood flow and urinary sodium excretion, which was remarkably attenuated in decoy rats. In decoy rats, high salt intake caused a greater positive sodium balance. Consequently, arterial pressure was remarkably increased (from 118+/-1.9 to 154+/-6.3 mm Hg) in decoy rats but not in control rats when the rats were challenged with a high salt diet. There was no blood pressure change in decoy rats that were maintained in normal salt diet. In conclusion, HIF-1alpha-mediated gene activation importantly participates in the regulation of renal medullary function and long-term arterial blood pressure.[1]


WikiGenes - Universities