The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Technical and theoretical considerations about gradient perfusion culture for epithelia used in tissue engineering, biomaterial testing and pharmaceutical research.

Epithelia act as biological barriers, which are exposed to different environments at the luminal and basal sides. To simulate this situation and to improve functional features an in vitro gradient perfusion culture technique was developed in our laboratory. This innovative technique appears to be simple at first sight, but the performance needs practical and theoretical knowledge. To harvest intact epithelia after a long-term gradient culture period of many days, leakage, edge damage and pressure differences in the system have to be avoided so that the epithelial barrier function is maintained continuously. Unexpectedly, one of the major obstacles are micro-injuries in the epithelia caused by gas bubbles, which arise during transportation of the medium or due to respiration of the cultured tissue. Gas bubbles randomly accumulate either at the luminal or basal fluid flow of the gradient perfusion culture container. This phenomenon results in fluid pressure differences between the luminal and basal perfusion compartments of the gradient container, which in turn leads to damage of the barrier function. Consequently, the content of gas bubbles in the transported culture medium has to be minimized. Thus, our technical concept is the reduction of gas bubbles while keeping the content of oxygen constant. To follow this strategy we developed a new type of screw cap for media bottles specifically designed to allow fluid contact only with tube and not with cap material. Furthermore, a gas expander module separates gas bubbles from the liquid phase during transportation of the medium. Finally, a new type of gradient culture container allows a permanent elimination of transported gas bubbles. Application of this innovative equipment optimizes the parallel transportation of fluid in the luminal and basal compartments of a gradient culture container.[1]

References

 
WikiGenes - Universities