Calmodulin-binding proteins also have a calmodulin-like binding site within their structure. The flip-flop model.
The flip-flop model is a mechanistic model proposed to describe how calmodulin activates enzymes. One prediction based upon this model is that calmodulin- activated enzymes would contain a calmodulin-like binding site which, among other attributes, would bind the peptide melittin. Five purified calmodulin-activated enzymes, namely calcineurin, myosin light chain kinase, phosphorylase b kinase, phosphodiesterase, and NAD kinase, were all found to bind biotinylated melittin and to also bind an antimelittin antibody and biotinylated calmodulins. Using gel blots of crude tissue extracts (rat brain and Arabidopsis), most proteins did not bind any of the probes and thus do not have these characteristics. However, among those which bind any of these probes, a strong correlation was found between those proteins which bind biotinylated calmodulins and those which bind melittin and antimelittin. Gel blots of phosphorylase b kinase demonstrate that the alpha, beta, and gamma subunits all bind calmodulin and melittin. A putative calmodulin-like binding site sequence was identified in eight enzymes or subunits which may play an important role in both melittin binding and calmodulin-dependent regulation of these enzymes.[1]References
- Calmodulin-binding proteins also have a calmodulin-like binding site within their structure. The flip-flop model. Jarrett, H.W., Madhavan, R. J. Biol. Chem. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg











