The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Polychromatic UV photon irradiance measurements using chemical actinometers based on NO3- and H2O2 excitation: applications for industrial photoreactors.

Ultraviolet light (UV) is a proven technology for disinfecting and decontaminating drinking water. For this purpose, both low-pressure monochromatic and medium-pressure polychromatic mercury arc lamps are commonly being used. Methods for photon irradiance measurements of monochromatic light are not necessarily appropriate for polychromatic light, and there is a need for the latter especially when large volumes of water are involved. The present manuscript reports a comparative study of polychromatic UV photolysis of aqueous NO3- containing RH (RH = HCO2-, CH3OH, or C2H5OH) and H2O2 containing CH3OH, all in aerated buffered aqueous solutions. The UV photolysis of NO3- generates ONOO-, *OH, and *NO2 intermediates and the stable NO2- ion. The maximum yield of NO2- is obtained in the presence of RH. The UV photolysis of H2O2 generates *OH radicals, which in the presence of CH3OH form formaldehyde. The H2O2/CH3OH actinometer is limited to low and moderate light intensities because the reaction mechanism involves competition between second- and first-order processes. Therefore, the NO3- actinometer is preferable at high photon irradiance despite the relatively low quantum yield of NO2- and its dependence on the excitation wavelength. The two actinometers are compared to radiometry and to iodide/iodate actinometer. The latter is limited to the 200-280 nm range due to the absorption of the photoproduct I3-. The NO3-/C2H5OH actinometer is particularly useful for large volumes of water in industrial high-intensity UV photoreactors as the actinometer solution can be safely disposed.[1]

References

 
WikiGenes - Universities