The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase.

Most carbamates are pseudoirreversible inhibitors of cholinesterases. Phenothiazine carbamates exhibit this inhibition of acetylcholinesterase but produce reversible inhibition of butyrylcholinesterase, suggesting that they do not form a covalent bond with the catalytic serine. This atypical inhibition is attributable to pi-pi interaction of the phenothiazine moiety with F329 and Y332 in butyrylcholinesterase. These residues are in a helical segment, referred to here as the E-helix because it contains E325 of the catalytic triad. The involvement of the E-helix in phenothiazine carbamate reversible inhibition of butyrylcholinesterase is confirmed using mutants of this enzyme at A328, F329, or Y332 that show typical pseudoirreversible inhibition. Thus, in addition to various domains of the butyrylcholinesterase active site gorge, such as the peripheral anionic site and the pi-cationic site of the Omega-loop, the E-helix represents a domain that could be exploited for development of specific inhibitors to treat dementias.[1]

References

  1. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. Darvesh, S., Darvesh, K.V., McDonald, R.S., Mataija, D., Walsh, R., Mothana, S., Lockridge, O., Martin, E. J. Med. Chem. (2008) [Pubmed]
 
WikiGenes - Universities