The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity.

The oligomeric state of human Band 3 (Mr = 95,000), the erythrocyte membrane anion exchanger, was examined by size exclusion high performance liquid chromatography in solutions containing the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether). Band 3 was heterogeneous with respect to oligomeric composition, the predominant (70%) species being a dimer that bound 0.57 mg of C12E8/mg of protein (Stokes radius = 78 A, s20,w = 6.9 S). Variable amounts of larger oligomers were also present; however, no evidence for equilibration between oligomeric species was observed in detergent solution. Analytical and large zone size exclusion chromatography showed that Band 3 could not be dissociated to monomers, other than by protein denaturation. The membrane domain of Band 3 (Mr = 52,000) was also dimeric, but without evidence for higher oligomeric forms, which implies that the interactions responsible for higher associations involve the cytoplasmic domain. Prelabeling of Band 3 with the anion exchange inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate had no effect upon the oligomeric state of either intact Band 3 or its 52-kDa membrane domain. Band 3 oligomeric state could be reversibly changed in the membrane by altering the pH of the solution. The fraction of Band 3 not associated with the cytoskeleton was almost entirely dimeric. Band 3 purified from erythrocytes separated by density gradient centrifugation revealed that older red cells contained a larger proportion of higher oligomers than did younger cells. We conclude that Band 3, in the membrane and in C12E8 solution, exists as a mixture of dimers and larger oligomers. The higher oligomers interact with the cytoskeleton, increase in amount with cell age, and are held together by interactions of the cytoplasmic domain.[1]


WikiGenes - Universities