The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PED-diol (n=8)     2-[2-[2-[2-[2-[2-[2-(2...

Synonyms: ACMC-1AL8Y, AG-B-08901, CHEBI:44794, ANW-31203, AC1L2VZM, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of EINECS 225-856-4

  • The di-tripeptide transport system (DtpT) of Lactococcus lactis was purified to apparent homogeneity by pre-extraction of crude membrane vesicles with octaethylene glycol monodecyl ether (C10E8), followed by solubilization with n-dodecyl-beta-D-maltoside (DDM) and chromatography on a Ni-NTA resin [1].
 

High impact information on EINECS 225-856-4

 

Biological context of EINECS 225-856-4

  • The present pendant-drop model is applied to study the adsorption kinetics of surfactant C10E8 (octaethylene glycol mono n-decyl ether) at the water-air interface of a pendant drop [7].
 

Anatomical context of EINECS 225-856-4

 

Associations of EINECS 225-856-4 with other chemical compounds

 

Gene context of EINECS 225-856-4

  • Treatment of nb/nb ghosts with the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether) resulted in nearly complete extraction of band 3 [17].
  • In this approach, we used a running electrolyte containing 3 x 10(-2) mol/L H3PO4 electrolyte (pH 2.5) and octaethylene glycol monododecyl ether (C12E8) as neutral surfactant [18].
  • A fraction containing cytochrome c1 was then eluted with buffer containing 1% dodecyl octaethylene glycol monoether [19].
  • An octaethylene glycol monododecyl ether-based mixed micellar assay for determining the lipid acyl hydrolase activity of patatin [20].
 

Analytical, diagnostic and therapeutic context of EINECS 225-856-4

References

  1. Manipulation of activity and orientation of membrane-reconstituted di-tripeptide transport protein DtpT of Lactococcus lactis. Fang, G., Friesen, R., Lanfermeijer, F., Hagting, A., Poolman, B., Konings, W.N. Mol. Membr. Biol. (1999) [Pubmed]
  2. Temporal synthesis of band 3 oligomers during terminal maturation of mouse erythroblasts. Dimers and tetramers exist in the membrane as preformed stable species. Hanspal, M., Golan, D.E., Smockova, Y., Yi, S.J., Cho, M.R., Liu, S.C., Palek, J. Blood (1998) [Pubmed]
  3. Probing of the membrane topology of sarcoplasmic reticulum Ca2+-ATPase with sequence-specific antibodies. Evidence for plasticity of the c-terminal domain. Moller, J.V., Ning, G., Maunsbach, A.B., Fujimoto, K., Asai, K., Juul, B., Lee, Y.J., Gomez de Gracia, A., Falson, P., le Maire, M. J. Biol. Chem. (1997) [Pubmed]
  4. High level expression, partial purification, and functional reconstitution of the human AE1 anion exchanger in Saccharomyces cerevisiae. Sekler, I., Kopito, R., Casey, J.R. J. Biol. Chem. (1995) [Pubmed]
  5. Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. Casey, J.R., Reithmeier, R.A. J. Biol. Chem. (1991) [Pubmed]
  6. Nucleotide specificity of canine cardiac sarcoplasmic reticulum. Differential alteration of enzyme properties by detergent treatment. Tate, C.A., Bick, R.J., Blaylock, S.L., Youker, K.A., Scherer, N.M., Entman, M.L. J. Biol. Chem. (1989) [Pubmed]
  7. Modeling of the adsorption kinetics of surfactants at the liquid-fluid interface of a pendant drop. Yang, C., Gu, Y. Langmuir : the ACS journal of surfaces and colloids. (2004) [Pubmed]
  8. Biphasic kinetics of sarcoplasmic reticulum Ca2+-ATPase and the detergent-solubilized monomer. Lund, S., Møller, J.V. J. Biol. Chem. (1988) [Pubmed]
  9. Kinetic characterization of the normal and detergent-perturbed reaction cycles of the sarcoplasmic reticulum calcium pump. Rate-limiting step(s) under different conditions. Champeil, P., le Maire, M., Andersen, J.P., Guillain, F., Gingold, M., Lund, S., Møller, J.V. J. Biol. Chem. (1986) [Pubmed]
  10. Effects of a nonionic detergent on calcium uptake by cardiac microsomes. Lu, Y.Z., Kirchberger, M.A. Biochemistry (1994) [Pubmed]
  11. Solubilization and reconstitution of high- and low-affinity Na(+)-dependent neutral L-alpha-amino acid transporters from rabbit small intestine. Nakanishi, M., Tetsuka, T., Kagawa, Y., Moriyama, A., Sasaki, M., Hirata, H. Biochim. Biophys. Acta (1993) [Pubmed]
  12. Adenosinetriphosphatase site stoichiometry in sarcoplasmic reticulum vesicles and purified enzyme. Barrabin, H., Scofano, H.M., Inesi, G. Biochemistry (1984) [Pubmed]
  13. Effects of detergent micelles on the recombination reaction of opsin and 11-cis-retinal. McCaslin, D.R., Tanford, C. Biochemistry (1981) [Pubmed]
  14. Different states of aggregation for unbleached and bleached rhodopsin after isolation in two different detergents. McCaslin, D.R., Tanford, C. Biochemistry (1981) [Pubmed]
  15. External reflection Fourier transform infrared spectroscopy of surfactants at the air-water interface: separation of bulk and adsorbed surfactant signals. Campbell, R.A., Day, J.P., Bain, C.D. Applied spectroscopy. (2005) [Pubmed]
  16. Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase. Lenoir, G., Menguy, T., Corre, F., Montigny, C., Pedersen, P.A., Thinès, D., le Maire, M., Falson, P. Biochim. Biophys. Acta (2002) [Pubmed]
  17. Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal membrane skeletons. Yi, S.J., Liu, S.C., Derick, L.H., Murray, J., Barker, J.E., Cho, M.R., Palek, J., Golan, D.E. Biochemistry (1997) [Pubmed]
  18. Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. Le, D.C., Morin, C.J., Beljean, M., Siouffi, A.M., Desbène, P.L. Journal of chromatography. A. (2005) [Pubmed]
  19. Purification of the iron-sulfur protein, ubiquinone-binding protein, and cytochrome c1 from a single source of mitochondrial complex III. Shimomura, Y., Nishikimi, M., Ozawa, T. Anal. Biochem. (1986) [Pubmed]
  20. An octaethylene glycol monododecyl ether-based mixed micellar assay for determining the lipid acyl hydrolase activity of patatin. Jiménez, M., Escribano, J., Pérez-Gilabert, M., Chazarra, S., Cabanes, J., García-Carmona, F. Lipids (2001) [Pubmed]
  21. Characterization of detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase by high-performance liquid chromatography. Andersen, J.P., Vilsen, B., Nielsen, H., Møller, J.V. Biochemistry (1986) [Pubmed]
  22. Equilibrium between monomers and oligomers of soluble Ca2+-ATPase during the functional cycle. Andersen, J.P., Vilsen, B. FEBS Lett. (1985) [Pubmed]
  23. Minimum enzyme unit for Na+/K+-ATPase is the alpha beta-protomer. Determination by low-angle laser light scattering photometry coupled with high-performance gel chromatography for substantially simultaneous measurement of ATPase activity and molecular weight. Hayashi, Y., Mimura, K., Matsui, H., Takagi, T. Biochim. Biophys. Acta (1989) [Pubmed]
  24. Monomer-dimer structure of cytochrome-c oxidase and cytochrome bc1 complex from the thermophilic bacterium PS3. Sone, N., Takagi, T. Biochim. Biophys. Acta (1990) [Pubmed]
 
WikiGenes - Universities