The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Loss of Sept4 exacerbates liver fibrosis through the dysregulation of hepatic stellate cells.

BACKGROUND/AIMS: Septins are ubiquitous and multifunctional scaffold proteins involved in cytoskeletal organization, exocytosis and other cellular processes. We disclose the quiescent hepatic stellate cells (HSCs)-specific expression of a septin subunit Sept4 in the liver, and explore the significance of the septin system in liver fibrosis. METHODS: We analyzed the expression of alpha-smooth muscle actin (alpha-SMA), collagens and other markers in primary cultured HSCs derived from wild-type and Sept4(-/-) mice. We compared susceptibility of these mice to liver fibrosis induced by either carbon tetrachloride treatment, bile duct ligation or methionine/choline-deficient diet. Collagen deposition, the principal parameter of liver fibrosis, was quantified both histochemically (Masson's trichrome stain) and biochemically (hydroxyproline content). RESULTS: In vitro, Sept4 mRNA/protein was remarkably downregulated in HSCs through myofibroblastic transformation. Sept4(-/-) HSCs showed normal morphology and proliferation, while myofibroblastic transformation as monitored by the upregulation of alpha-SMA and collagen was accelerated compared to wild-type HSCs. In vivo, liver fibrosis was consistently more severe in Sept4(-/-) mice than in wild-type littermates in all of the three paradigms of hepatitis/liver fibrosis. CONCLUSIONS: These data concordantly indicate that the HSC-specific septin subunit Sept4 and perhaps the septin system are involved in the suppressive modulation of myofibroblastic transformation and fibrogenesis associated with liver diseases.[1]

References

  1. Loss of Sept4 exacerbates liver fibrosis through the dysregulation of hepatic stellate cells. Iwaisako, K., Hatano, E., Taura, K., Nakajima, A., Tada, M., Seo, S., Tamaki, N., Sato, F., Ikai, I., Uemoto, S., Kinoshita, M. J. Hepatol. (2008) [Pubmed]
 
WikiGenes - Universities