The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

choline     2-hydroxyethyl-trimethyl- azanium

Synonyms: Cholinum, Bilineurine, Hepacholine, CHEMBL920, Lopac-C-1754, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of choline

 

Psychiatry related information on choline

 

High impact information on choline

  • Histopathology of brain sections revealed reduction and hypocellularity of the posterior pituitary of Ptprs-/- mice, as well as a reduction of approximately 50-75% in the number of choline acetyl transferase-positive cells in the forebrain [12].
  • For amino acids and monoamines, this is achieved by their uptake into the cell by specific high-affinity transporters; acetylcholine is first broken down in the extracellular space and then choline is taken up by the cell [13].
  • Choline biosynthesis by a preparation enriched in synaptosomes from rat brain [14].
  • Solubilizaiton of the choline transport system and re-incorporation into artificial membranes [15].
  • The carrier-mediated transport of choline has been described in several types of cell and at isolated synaptic terminals [15].
 

Chemical compound and disease context of choline

 

Biological context of choline

 

Anatomical context of choline

 

Associations of choline with other chemical compounds

 

Gene context of choline

  • In the absence of inositol and choline (derepressing), the products of the INO2 and INO4 genes form a heteromeric complex which binds to a 10-bp element, upstream activation sequence INO (UASINO), in the promoters of the phospholipid biosynthetic genes to activate their transcription [39].
  • In the presence of inositol and choline (repressing), the product of the OPI1 gene represses transcription dictated by the UASINO element [39].
  • The level of INO1 RNA was repressed 12-fold when the cells were grown in medium containing inositol, and it was repressed 33-fold when the cells were grown in the presence of inositol and choline together [40].
  • PtdCho biosynthesis measured by choline incorporation into isolated hepatocytes was not compromised in the Pcyt1a+/- mice [41].
  • These results suggest that Par-4 is directly involved in regulating choline uptake by interacting with CHT1 and by reducing its incorporation on the cell surface [42].
  • Although CD-Pemt(-)(/)(-) mice failed to adapt to choline deprivation, choline redistribution was also initiated in these mice [43].
  • The mRNA and protein expression of histone methyltransferases G9a and Suv39h1 were directly related to the availability of choline [44].
 

Analytical, diagnostic and therapeutic context of choline

  • Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline [4].
  • Choline kinase activity increased by 27% (P less than 0.001) in 28-day-old rats when renal growth was stimulated by contralateral nephrectomy; the increase occurred within 2 h after surgery [24].
  • However, corticosteroid adminstration was associated with a marked increase in the amount of phosphatidyl choline that could be recovered from the alveolar spaces by lavage, over and above the increase resulting from irradiation, and a significant increase in the incorporation of [14C]palmitate into phosphatidyl choline by lung slices [45].
  • The maximum rate of choline transport (Vmax) was abnormally high before transplantation and fell to normal values during the first week after transplantation [46].
  • Erythrocyte choline uptake after renal transplantation [46].

References

  1. Choline for tardive dyskinesia. Weiss, K.J. N. Engl. J. Med. (1977) [Pubmed]
  2. Choline for blepharospasm. Skarf, B., Sharpe, J.A. N. Engl. J. Med. (1981) [Pubmed]
  3. Acetylcholine synthesis by displaced amacrine cells. Hayden, S.A., Mills, J.W., Masland, R.M. Science (1980) [Pubmed]
  4. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. Cohen, B.M., Renshaw, P.F., Stoll, A.L., Wurtman, R.J., Yurgelun-Todd, D., Babb, S.M. JAMA (1995) [Pubmed]
  5. Phosphatidyl choline is recognized by a series of Ly-1+ murine B cell lymphomas specific for erythrocyte membranes. Mercolino, T.J., Arnold, L.W., Haughton, G. J. Exp. Med. (1986) [Pubmed]
  6. Sex and menopausal status influence human dietary requirements for the nutrient choline. Fischer, L.M., daCosta, K.A., Kwock, L., Stewart, P.W., Lu, T.S., Stabler, S.P., Allen, R.H., Zeisel, S.H. Am. J. Clin. Nutr. (2007) [Pubmed]
  7. Choline in Alzheimer's disease. Renvoize, E.B., Jerram, T. N. Engl. J. Med. (1979) [Pubmed]
  8. Red-cell/plasma choline ratio in dementia. Barclay, L.L., Blass, J.P., Kopp, U., Hanin, I. N. Engl. J. Med. (1982) [Pubmed]
  9. Red-cell choline and Gilles de la Tourette syndrome. Hanin, I., Merikangas, J.R., Merikangas, K.R., Kopp, U. N. Engl. J. Med. (1979) [Pubmed]
  10. Huntington's disease: clinical and chemical effects of choline administration. Growdon, J.H., Cohen, E.L., Wurtman, R.J. Ann. Neurol. (1977) [Pubmed]
  11. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. Liu, C., Ding, J.M., Faiman, L.E., Gillette, M.U. J. Neurosci. (1997) [Pubmed]
  12. Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Wallace, M.J., Batt, J., Fladd, C.A., Henderson, J.T., Skarnes, W., Rotin, D. Nat. Genet. (1999) [Pubmed]
  13. Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Todorov, L.D., Mihaylova-Todorova, S., Westfall, T.D., Sneddon, P., Kennedy, C., Bjur, R.A., Westfall, D.P. Nature (1997) [Pubmed]
  14. Choline biosynthesis by a preparation enriched in synaptosomes from rat brain. Blusztajn, J.K., Wurtman, R.J. Nature (1981) [Pubmed]
  15. Solubilizaiton of the choline transport system and re-incorporation into artificial membranes. King, R.G., Marchbanks, R.M. Nature (1980) [Pubmed]
  16. Rapid production of pancreatic carcinoma by initiation with N-nitroso-bis(2-oxopropyl)amine and repeated augmentation pressure in hamsters. Mizumoto, K., Tsutsumi, M., Denda, A., Konishi, Y. J. Natl. Cancer Inst. (1988) [Pubmed]
  17. Chronic toxicity of methotrexate in rats: partial to complete projection of the liver by choline: Brief communication. Freeman-Narrod, M., Narrod, S.A., Custer, R.P. J. Natl. Cancer Inst. (1977) [Pubmed]
  18. Beneficial effects of cholecystokinin-receptor blockade and inhibition of proteolytic enzyme activity in experimental acute hemorrhagic pancreatitis in mice. Evidence for cholecystokinin as a major factor in the development of acute pancreatitis. Niederau, C., Liddle, R.A., Ferrell, L.D., Grendell, J.H. J. Clin. Invest. (1986) [Pubmed]
  19. Evidence for a cerebral effect of the hepatitis C virus. Forton, D.M., Allsop, J.M., Main, J., Foster, G.R., Thomas, H.C., Taylor-Robinson, S.D. Lancet (2001) [Pubmed]
  20. Intestinal failure-associated liver disease: what do we know today? Kelly, D.A. Gastroenterology (2006) [Pubmed]
  21. Cancer imaging with fluorine-18-labeled choline derivatives. Kwee, S.A., DeGrado, T.R., Talbot, J.N., Gutman, F., Coel, M.N. Semin. Nucl. Med (2007) [Pubmed]
  22. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. Knight, B., Yeoh, G.C., Husk, K.L., Ly, T., Abraham, L.J., Yu, C., Rhim, J.A., Fausto, N. J. Exp. Med. (2000) [Pubmed]
  23. Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. Arnold, L.W., Pennell, C.A., McCray, S.K., Clarke, S.H. J. Exp. Med. (1994) [Pubmed]
  24. Choline pathways during normal and stimulated renal growth in rats. Bean, G.H., Lowenstein, L.M. J. Clin. Invest. (1978) [Pubmed]
  25. In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport. Isaacs, P.E., Corbett, C.L., Riley, A.K., Hawker, P.C., Turnberg, L.A. J. Clin. Invest. (1976) [Pubmed]
  26. Hepatic DNA methylation and liver tumor formation in male C3H mice fed methionine- and choline-deficient diets. Shivapurkar, N., Wilson, M.J., Hoover, K.L., Mikol, Y.B., Creasia, D., Poirier, L.A. J. Natl. Cancer Inst. (1986) [Pubmed]
  27. Antibody to Thy-1 antigen injected into rat hypothalamus selectively inhibits carbamyl choline induced drinking. Williams, C.A., Barna, J., Schupf, N. Nature (1980) [Pubmed]
  28. The AF64a-treated mouse: possible model for central cholinergic hypofunction. Mantione, C.R., Fisher, A., Hanin, I. Science (1981) [Pubmed]
  29. High-affinity choline transport in proteoliposomes derived from rat cortical synaptosomes. Meyer, E.M., Cooper, J.R. Science (1982) [Pubmed]
  30. Choline and cholinergic neurons. Blusztajn, J.K., Wurtman, R.J. Science (1983) [Pubmed]
  31. Choline excites cortical neurons. Krnjević, K., Reinhardt, W. Science (1979) [Pubmed]
  32. Thyrotropin-releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons. Renaud, L.P., Blume, H.W., Pittman, Q.J., Lamour, Y., Tan, A.T. Science (1979) [Pubmed]
  33. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Schweizer, E., Hofmann, J. Microbiol. Mol. Biol. Rev. (2004) [Pubmed]
  34. Hydroxyeicosatetraenoic acid metabolism in cultured human skin fibroblasts. Evidence for peroxisomal beta-oxidation. Gordon, J.A., Figard, P.H., Spector, A.A. J. Clin. Invest. (1990) [Pubmed]
  35. Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. Lohr, J.W., Grantham, J.J. J. Clin. Invest. (1986) [Pubmed]
  36. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Chiuve, S.E., Giovannucci, E.L., Hankinson, S.E., Zeisel, S.H., Dougherty, L.W., Willett, W.C., Rimm, E.B. Am. J. Clin. Nutr. (2007) [Pubmed]
  37. Choline-related supplements improve abnormal plasma methionine-homocysteine metabolites and glutathione status in children with cystic fibrosis. Innis, S.M., Davidson, A.G., Melynk, S., James, S.J. Am. J. Clin. Nutr. (2007) [Pubmed]
  38. Metabolic imaging of pancreatic ductal adenocarcinoma detects altered choline metabolism. Penet, M.F., Shah, T., Bharti, S., Krishnamachary, B., Artemov, D., Mironchik, Y., Wildes, F., Maitra, A., Bhujwalla, Z.M. Clin. Cancer Res. (2015) [Pubmed]
  39. Autoregulated expression of the yeast INO2 and INO4 helix-loop-helix activator genes effects cooperative regulation on their target genes. Ashburner, B.P., Lopes, J.M. Mol. Cell. Biol. (1995) [Pubmed]
  40. Expression of the Saccharomyces cerevisiae inositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Hirsch, J.P., Henry, S.A. Mol. Cell. Biol. (1986) [Pubmed]
  41. Early embryonic lethality in mice with targeted deletion of the CTP:phosphocholine cytidylyltransferase alpha gene (Pcyt1a). Wang, L., Magdaleno, S., Tabas, I., Jackowski, S. Mol. Cell. Biol. (2005) [Pubmed]
  42. Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane. Xie, J., Guo, Q. J. Biol. Chem. (2004) [Pubmed]
  43. Choline redistribution during adaptation to choline deprivation. Li, Z., Agellon, L.B., Vance, D.E. J. Biol. Chem. (2007) [Pubmed]
  44. Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain. Davison, J.M., Mellott, T.J., Kovacheva, V.P., Blusztajn, J.K. J. Biol. Chem. (2009) [Pubmed]
  45. Radiation pneumonitis in mice. Some effects of corticosteroids on mortality and pulmonary physiology. Gross, N.J. J. Clin. Invest. (1980) [Pubmed]
  46. Erythrocyte choline uptake after renal transplantation. Poli de Figueiredo, C.E., Ellory, J.C., Hendry, B.M. Lancet (1992) [Pubmed]
 
WikiGenes - Universities