The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome.

Gpx (glutathione peroxidase)-1 enzyme activity and mRNA levels decrease dramatically in Se (selenium) deficiency, whereas other selenoproteins are less affected by Se deficiency. This hierarchy of Se regulation is not understood, but the position of the UGA selenocysteine codon is thought to play a major role in making selenoprotein mRNAs susceptible to nonsense-mediated decay. Thus in the present paper we studied the complete selenoproteome in the mouse to uncover additional selenoprotein mRNAs that are highly regulated by Se status. Mice were fed on Se-deficient, Se-marginal and Se-adequate diets (0, 0.05 and 0.2 microg of Se/g respectively) for 35 days, and selenoprotein mRNA levels in liver and kidney were determined using microarray analysis and quantitative real-time PCR analysis. Se-deficient mice had liver Se concentrations and liver Gpx1 and thioredoxin reductase activities that were 4, 3 and 3% respectively of the levels in Se-adequate mice, indicating that the mice were Se deficient. mRNAs for Selh (selenoprotein H) and Sepw1 (selenoprotein W) as well as Gpx1 were decreased by Se deficiency to <40% of Se-adequate levels. Five and two additional mRNAs were moderately down-regulated in Sedeficient liver and kidney respectively. Importantly, nine selenoprotein mRNAs in liver and fifteen selenoprotein mRNAs in the kidney were not significantly regulated by Se deficiency, clearly demonstrating that Se regulation of selenoprotein mRNAs is not a general phenomenon. The similarity of the response to Se deficiency suggests that there is one underlying mechanism responsible. Importantly, the position of the UGA codon did not predict susceptibility to Se regulation, clearly indicating that additional features are involved in causing selenoprotein mRNAs to be sensitive to Se status.[1]


WikiGenes - Universities