The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells.

Expression of heat shock proteins (HSPs) is classically activated at temperatures above the physiologic range (>or=42 degrees C) via activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Several studies suggest that less extreme hyperthermia, especially within the febrile range, as occurs during fever and exertional/environmental hyperthemia, can also activate HSF-1 and enhance HSP expression. We compared HSP72 protein and mRNA expression in human A549 lung epithelial cells continuously exposed to 38.5 degrees C, 39.5 degrees C, or 41 degrees C or exposed to a classic heat shock (42 degrees C for 2 h). We found that expression of HSP72 protein and mRNA increased linearly as incubation temperature was increased from 37 degrees C to 41 degrees C, but increased abruptly when the incubation temperature was raised to 42 degrees C. A similar response in luciferase activity was observed using A549 cells stably transfected with an HSF-1-responsive luciferase reporter plasmid. However, activation of intranuclear HSF-1 DNA-binding activity was comparable at 38.5 degrees C, 39.5 degrees C, and 41 degrees C and only modestly greater at 42 degrees C but the mobility of HSF1 protein on a denaturing gel was altered with increasing exposure temperature and was distinctly different at 42 degrees C. These findings indicate that the proportional changes in HSF-1-dependent HSP72 expression at febrile-range temperatures are dependent upon exposure time and temperature but not on the degree of HSF-1 DNA-binding activity. Instead, HSF-1-mediated HSP expression following hyperthermia and heat shock appears to be mediated, in addition to HSF-1 activation, by posttranslational modifications of HSF-1 protein.[1]

References

 
WikiGenes - Universities