Mechanism for acute control of fatty acid synthesis by glucagon and 3':5'-cyclic AMP in the liver cell.
Labeling experiments with chicken liver cell monolayers and suspensions show that glucagon and N6, O2-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP) block fatty acid synthesis from acetate without appreciably affecting cholesterogenesis from acetate or acylglyceride synthesis from palmitate. Neither acetyl-CoA carboxylase [acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] activity assayed in the presence of citrate nor fatty acid synthetase activity is decreased in extracts of cells treated with glucagon. However, the cytoplasmic concentration of citrate, a required allosteric activator of acetyl-CoA carboxylase, is depressed more than 90% by glucagon or dibutyrl cyclic AMP. Pyruvate or lactate largely prevents the inhibitory action of these effectors on fatty acid synthesis by causing a large increase in cytoplasmic citrate level. Thus, it appears that glucagon, acting via cyclic AMP, inhibits fatty acid synthesis by blocking the formation of citrate, an essential activator of acetyl-CoA carboxylase.[1]References
- Mechanism for acute control of fatty acid synthesis by glucagon and 3':5'-cyclic AMP in the liver cell. Watkins, P.A., Tarlow, D.M., Lane, M.D. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg