The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Upregulated monocytic expression of CXC chemokine ligand 10 (CXCL-10) and its relationship with serum interleukin-6 levels in the syndrome of frailty.

Frailty is an important geriatric syndrome that predicts disability and mortality. Substantial evidence suggests inflammation marked by elevated IL-6 levels as a key pathophysiologic factor that contributes to frailty. CXCL-10, a potent pro-inflammatory chemokine, has increased levels with age and is implicated in several inflammatory conditions. To better understand molecular mechanisms of inflammation activation in frailty, we evaluated monocytic expression of CXCL-10 and other inflammatory pathway genes by pathway-specific gene array analysis and quantitative RT-PCR. Frailty status was determined by the validated criteria. Sixteen pairs of community-dwelling frail and age-, race-, and sex-matched non-frail participants (mean age 83 years, range 72-94) completed the study. Here we report that frail participants had higher CXCL-10 expression levels than matched non-frail controls (1.05+/-0.88 versus 0.53+/-0.39, p=0.04). CXCL-10 expression correlated with IL-6 levels only in frail participants (Spearman correlation coefficient r=0.52, p=0.03). Furthermore, frailty-associated CXCL-10 upregulation was highly correlated with IL-6 elevation, both measured by frail-over-non-frail ratios (r=0.93, p<0.0001). These findings suggest upregulated monocytic expression of CXCL-10 as an important molecular mechanism that contributes to inflammation activation in frail older adults. Therapeutic implications include potential development of CXCL-10-based interventional strategies for the prevention and treatment of frailty in older adults.[1]

References

 
WikiGenes - Universities