The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein.

Most forms of Parkinson's disease (PD) are sporadic in nature, but some have genetic causes as first described for the alpha-synuclein gene. The alpha-synuclein protein also accumulates as insoluble aggregates in Lewy bodies in sporadic PD as well as in most inherited forms of PD. The focus of the present study is the modulation of synaptic plasticity in the corticostriatal pathway of transgenic (Tg) mice that overexpress the human alpha-synuclein protein throughout the brain (ASOTg). Paired-pulse facilitation was detected in vitro by activation of corticostriatal afferents in ASOTg mice, consistent with a presynaptic effect of elevated human alpha-synuclein. However basal synaptic transmission was unchanged in ASOTg, suggesting that human alpha-synuclein could impact paired-pulse facilitation via a presynaptic mechanism not directly related to the probability of neurotransmitter release. Mice lacking alpha-synuclein or those expressing normal and A53T human alpha-synuclein in tyrosine hydroxylase-containing neurons showed, instead, paired-pulse depression. High-frequency stimulation induced a presynaptic form of long-term depression solely in ASOTg striatum. A presynaptic, N-methyl-d-aspartate receptor-independent form of chemical long-term potentiation induced by forskolin (FSK) was enhanced in ASOTg striatum, while FSK-induced cAMP levels were reduced in ASOTg synaptoneurosome fractions. Overall the results suggest that elevated human alpha-synuclein alters presynaptic plasticity in the corticostriatal pathway, possibly reflecting a reduction in glutamate at corticostriatal synapses by modulation of adenylyl cyclase signaling pathways. ASOTg mice may recapitulate an early stage in PD during which overexpressed alpha-synuclein dampens corticostriatal synaptic transmission and reduces movement.[1]

References

  1. Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Watson, J.B., Hatami, A., David, H., Masliah, E., Roberts, K., Evans, C.E., Levine, M.S. Neuroscience (2009) [Pubmed]
 
WikiGenes - Universities