The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Long-Term Potentiation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Long-Term Potentiation


Psychiatry related information on Long-Term Potentiation


High impact information on Long-Term Potentiation


Chemical compound and disease context of Long-Term Potentiation


Biological context of Long-Term Potentiation


Anatomical context of Long-Term Potentiation


Associations of Long-Term Potentiation with chemical compounds


Gene context of Long-Term Potentiation


Analytical, diagnostic and therapeutic context of Long-Term Potentiation


  1. Long-term potentiation activates the GAP-43 promoter: selective participation of hippocampal mossy cells. Namgung, U., Matsuyama, S., Routtenberg, A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. HIV-1 Tat inhibits long-term potentiation and attenuates spatial learning [corrected]. Li, S.T., Matsushita, M., Moriwaki, A., Saheki, Y., Lu, Y.F., Tomizawa, K., Wu, H.Y., Terada, H., Matsui, H. Ann. Neurol. (2004) [Pubmed]
  3. Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats. Gardoni, F., Kamal, A., Bellone, C., Biessels, G.J., Ramakers, G.M., Cattabeni, F., Gispent, W.H., Di Luca, M. J. Neurochem. (2002) [Pubmed]
  4. Induction of long-term potentiation of C fibre-evoked spinal field potentials requires recruitment of group I, but not group II/III metabotropic glutamate receptors. Azkue, J.J., Liu, X.G., Zimmermann, M., Sandkühler, J. Pain (2003) [Pubmed]
  5. Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Alterations in hyperammonemia. Monfort, P., Muñoz, M.D., Kosenko, E., Llansola, M., Sánchez-Pérez, A., Cauli, O., Felipo, V. Neurochem. Int. (2004) [Pubmed]
  6. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nelson, R.J., Demas, G.E., Huang, P.L., Fishman, M.C., Dawson, V.L., Dawson, T.M., Snyder, S.H. Nature (1995) [Pubmed]
  7. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Mereu, G., Fà, M., Ferraro, L., Cagiano, R., Antonelli, T., Tattoli, M., Ghiglieri, V., Tanganelli, S., Gessa, G.L., Cuomo, V. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  8. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Asaka, Y., Jugloff, D.G., Zhang, L., Eubanks, J.H., Fitzsimonds, R.M. Neurobiol. Dis. (2006) [Pubmed]
  9. AM251, a selective antagonist of the CB1 receptor, inhibits the induction of long-term potentiation and induces retrograde amnesia in rats. de Oliveira Alvares, L., Genro, B.P., Vaz Breda, R., Pedroso, M.F., Da Costa, J.C., Quillfeldt, J.A. Brain Res. (2006) [Pubmed]
  10. Impairment in hippocampal long-term potentiation in mice under-expressing the Alzheimer's disease related gene presenilin-1. Morton, R.A., Kuenzi, F.M., Fitzjohn, S.M., Rosahl, T.W., Smith, D., Zheng, H., Shearman, M., Collingridge, G.L., Seabrook, G.R. Neurosci. Lett. (2002) [Pubmed]
  11. Neuronal Ca2+/calmodulin-dependent protein kinases. Hanson, P.I., Schulman, H. Annu. Rev. Biochem. (1992) [Pubmed]
  12. stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Shumyatsky, G.P., Malleret, G., Shin, R.M., Takizawa, S., Tully, K., Tsvetkov, E., Zakharenko, S.S., Joseph, J., Vronskaya, S., Yin, D., Schubart, U.K., Kandel, E.R., Bolshakov, V.Y. Cell (2005) [Pubmed]
  13. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Huang, C.S., Shi, S.H., Ule, J., Ruggiu, M., Barker, L.A., Darnell, R.B., Jan, Y.N., Jan, L.Y. Cell (2005) [Pubmed]
  14. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Shumyatsky, G.P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L., Battey, J.F., Dulac, C., Kandel, E.R., Bolshakov, V.Y. Cell (2002) [Pubmed]
  15. Mutations in Rab3a alter circadian period and homeostatic response to sleep loss in the mouse. Kapfhamer, D., Valladares, O., Sun, Y., Nolan, P.M., Rux, J.J., Arnold, S.E., Veasey, S.C., Bućan, M. Nat. Genet. (2002) [Pubmed]
  16. Localization and subcellular distribution of N-copine in mouse brain. Nakayama, T., Yaoi, T., Kuwajima, G. J. Neurochem. (1999) [Pubmed]
  17. Age-related behavioural deficits in transgenic mice expressing the HIV-1 coat protein gp120. D'hooge, R., Franck, F., Mucke, L., De Deyn, P.P. Eur. J. Neurosci. (1999) [Pubmed]
  18. Mice deficient in endothelial nitric oxide synthase exhibit a selective deficit in hippocampal long-term potentiation. Wilson, R.I., Gödecke, A., Brown, R.E., Schrader, J., Haas, H.L. Neuroscience (1999) [Pubmed]
  19. The effect of nitric oxide on the efficacy of synaptic transmission through the chick ciliary ganglion. Scott, T.R., Bennett, M.R. Br. J. Pharmacol. (1993) [Pubmed]
  20. Nitric oxide is required for the maintenance but not initiation of ganglionic long-term potentiation. Altememi, G.F., Alkadhi, K.A. Neuroscience (1999) [Pubmed]
  21. Short-term synaptic plasticity is altered in mice lacking synapsin I. Rosahl, T.W., Geppert, M., Spillane, D., Herz, J., Hammer, R.E., Malenka, R.C., Südhof, T.C. Cell (1993) [Pubmed]
  22. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Raymond, L.A., Blackstone, C.D., Huganir, R.L. Nature (1993) [Pubmed]
  23. Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Manabe, T., Noda, Y., Mamiya, T., Katagiri, H., Houtani, T., Nishi, M., Noda, T., Takahashi, T., Sugimoto, T., Nabeshima, T., Takeshima, H. Nature (1998) [Pubmed]
  24. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Lüthl, A., Laurent, J.P., Figurov, A., Muller, D., Schachner, M. Nature (1994) [Pubmed]
  25. Requirement of ERK activation for visual cortical plasticity. Di Cristo, G., Berardi, N., Cancedda, L., Pizzorusso, T., Putignano, E., Ratto, G.M., Maffei, L. Science (2001) [Pubmed]
  26. Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Gray, R., Johnston, D. Nature (1987) [Pubmed]
  27. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Reimold, A.M., Grusby, M.J., Kosaras, B., Fries, J.W., Mori, R., Maniwa, S., Clauss, I.M., Collins, T., Sidman, R.L., Glimcher, M.J., Glimcher, L.H. Nature (1996) [Pubmed]
  28. Inhibition of noradrenaline release by antibodies to B-50 (GAP-43). Dekker, L.V., De Graan, P.N., Oestreicher, A.B., Versteeg, D.H., Gispen, W.H. Nature (1989) [Pubmed]
  29. Experience-dependent modification of synaptic plasticity in visual cortex. Kirkwood, A., Rioult, M.C., Bear, M.F. Nature (1996) [Pubmed]
  30. Setting the tone: superficial dorsal horn projection neurons regulate pain sensitivity. Mantyh, P.W., Hunt, S.P. Trends Neurosci. (2004) [Pubmed]
  31. Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Arancio, O., Kiebler, M., Lee, C.J., Lev-Ram, V., Tsien, R.Y., Kandel, E.R., Hawkins, R.D. Cell (1996) [Pubmed]
  32. Spatial learning without NMDA receptor-dependent long-term potentiation. Saucier, D., Cain, D.P. Nature (1995) [Pubmed]
  33. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Bao, S., Chan, V.T., Merzenich, M.M. Nature (2001) [Pubmed]
  34. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Barbour, B., Szatkowski, M., Ingledew, N., Attwell, D. Nature (1989) [Pubmed]
  35. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Costa, R.M., Federov, N.B., Kogan, J.H., Murphy, G.G., Stern, J., Ohno, M., Kucherlapati, R., Jacks, T., Silva, A.J. Nature (2002) [Pubmed]
  36. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N., Jan, L.Y. Nature (1994) [Pubmed]
  37. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., Kushiya, E., Yagi, T., Aizawa, S., Inoue, Y., Sugiyama, H. Nature (1995) [Pubmed]
  38. The MAPK cascade is required for mammalian associative learning. Atkins, C.M., Selcher, J.C., Petraitis, J.J., Trzaskos, J.M., Sweatt, J.D. Nat. Neurosci. (1998) [Pubmed]
  39. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Zhao, M.G., Toyoda, H., Lee, Y.S., Wu, L.J., Ko, S.W., Zhang, X.H., Jia, Y., Shum, F., Xu, H., Li, B.M., Kaang, B.K., Zhuo, M. Neuron (2005) [Pubmed]
  40. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Fischer, A., Sananbenesi, F., Pang, P.T., Lu, B., Tsai, L.H. Neuron (2005) [Pubmed]
  41. NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Mody, I., Heinemann, U. Nature (1987) [Pubmed]
  42. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., Selkoe, D.J. Nature (2002) [Pubmed]
  43. Visualization of changes in presynaptic function during long-term synaptic plasticity. Zakharenko, S.S., Zablow, L., Siegelbaum, S.A. Nat. Neurosci. (2001) [Pubmed]
  44. Glutamate iontophoresis induces long-term potentiation in the absence of evoked presynaptic activity. Cormier, R.J., Mauk, M.D., Kelly, P.T. Neuron (1993) [Pubmed]
  45. Centrally active modulators of glutamate receptors facilitate the induction of long-term potentiation in vivo. Stäubli, U., Perez, Y., Xu, F.B., Rogers, G., Ingvar, M., Stone-Elander, S., Lynch, G. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
WikiGenes - Universities