Cell biology of molybdenum.
The transition element molybdenum (Mo) is an essential micronutrient that is needed as catalytically active metal during enzyme catalysis. In humans four enzymes depend on Mo: sulfite oxidase, xanthine oxidoreductase, aldehyde oxidase, and mitochondrial amidoxime reductase. In addition to these enzymes, plants harbor a fifth Mo-enzyme namely nitrate reductase. To gain biological activity and fulfill its function in enzymes, Mo has to be complexed by a pterin compound thus forming the molybdenum cofactor. This article will review the way that Mo takes from uptake into the cell, via formation of the molybdenum cofactor and its storage, up to the final insertion of the molybdenum cofactor into apometalloenzymes.[1]References
- Cell biology of molybdenum. Mendel, R.R. Biofactors (2009) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg